Import Question JSON

Current Question (ID: 8036)

Question:
A molecule having the smallest bond angle among the following is :
Options:
  • 1. $\text{SO}_2$
  • 2. $\text{H}_2\text{O}$
  • 3. $\text{H}_2\text{S}$ (Correct)
  • 4. $\text{NH}_3$
Solution:
HINT: $\text{Bond angle totally depends on hybridization.}$ Explanation: $\begin{tabular}{|l|l|l|l|} \hline \text{Molecule} & \text{Hybridization} & \text{Repulsion} & \text{Bond angle} \\ \hline \text{SO}_2 & \text{sp}^2 & \text{lp-bp, bp-bp} & 119^\circ \\ \hline \text{H}_2\text{O} & \text{sp}^3 & \text{lp-lp, bp-bp, lp-bp} & 104.5^\circ \\ \hline \text{H}_2\text{S} & \text{No hybridization} & & 92^\circ \\ \hline \text{NH}_3 & \text{sp}^3 & \text{lp-bp, bp-bp} & 107^\circ \\ \hline \end{tabular}$ Among the given molecules, $\text{H}_2\text{S}$ has the smallest bond angle of $92^\circ$. This is because for elements from period 3 and beyond (like S in $\text{H}_2\text{S}$), the bond angles tend to be closer to $90^\circ$ due to negligible hybridization and the involvement of p-orbitals in bonding. This phenomenon is known as Drago's Rule. The lone pair repulsion in $\text{H}_2\text{S}$ is also higher than in $\text{H}_2\text{O}$ due to the larger size of the sulfur atom, which pushes the bonding pairs closer. Hence, option third is the answer.

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}