Import Question JSON

Current Question (ID: 8076)

Question:
In the option are given sequences of increasing bond order for the following species. The correct option is : $ \text{O}_2, \text{N}_2, \text{O}_2^{+} \text{ and } \text{O}_2^{-} $
Options:
  • 1. $ \text{O}_2 > \text{N}_2 > \text{O}_2^{+} > \text{O}_2^{-} $
  • 2. $ \text{O}_2^{-} > \text{O}_2 > \text{O}_2^{+} > \text{N}_2 $ (Correct)
  • 3. $ \text{N}_2 > \text{O}_2^{+} > \text{O}_2 > \text{O}_2^{-} $
  • 4. $ \text{O}_2^{-} > \text{O}_2^{+} > \text{O}_2 > \text{N}_2 $
Solution:
\text{HINT: Bond order} = \frac{1}{2} (\text{N}_b - \text{N}_a) \text{, where } \text{N}_a \text{ is number of antibonding electrons and } \text{N}_b \text{ is number of bonding electrons.} \n\n \text{Explanation:} \n\n \text{The MOT diagram of given ions is as follows:} \n\n 1.) \text{Electronic configuration of } \text{O}_2 \text{ (16 electrons)} = \sigma_{1s}^{2}, \sigma_{1s}^{\ast 2}, \sigma_{2s}^{2}, \sigma_{2s}^{\ast 2}, \sigma_{2p_{z}}^{2}, \pi_{2p_{x}}^{2} \approx \pi_{2p_{y}}^{2}, \pi_{2p_{x}}^{\ast 1} \approx \pi_{2p_{y}}^{\ast 1} \n\n \text{Bond order} = \frac{1}{2} (\text{N}_b - \text{N}_a) = \frac{1}{2} (10 - 6) = 2 \n\n 2.) \text{Electronic configuration of } \text{O}_2^{+} \text{ (15 electrons)} = \sigma_{1s}^{2}, \sigma_{1s}^{\ast 2}, \sigma_{2s}^{2}, \sigma_{2s}^{\ast 2}, \sigma_{2p_{z}}^{2}, \pi_{2p_{x}}^{2} \approx \pi_{2p_{y}}^{2}, \pi_{2p_{x}}^{\ast 1} \approx \pi_{2p_{y}}^{\ast 0} \n\n \text{Bond order} = \frac{1}{2} (\text{N}_b - \text{N}_a) = \frac{1}{2} (10 - 5) = 2.5 \n\n 3.) \text{Electronic configuration of } \text{O}_2^{-} \text{ (17 electrons)} = \sigma_{1s}^{2}, \sigma_{1s}^{\ast 2}, \sigma_{2s}^{2}, \sigma_{2s}^{\ast 2}, \sigma_{2p_{z}}^{2}, \pi_{2p_{x}}^{2} \approx \pi_{2p_{y}}^{2}, \pi_{2p_{x}}^{\ast 2} \approx \pi_{2p_{y}}^{\ast 1} \n\n \text{Bond order} = \frac{1}{2} (\text{N}_b - \text{N}_a) = \frac{1}{2} (10 - 7) = 1.5 \n\n 4.) \text{Electronic configuration of } \text{N}_2 \text{ (14 electrons)} = \sigma_{1s}^{2}, \sigma_{1s}^{\ast 2}, \sigma_{2s}^{2}, \sigma_{2s}^{\ast 2}, \pi_{2p_{x}}^{2} \approx \pi_{2p_{y}}^{2}, \sigma_{2p_{z}}^{2} \n\n \text{Bond order} = \frac{1}{2} (\text{N}_b - \text{N}_a) = \frac{1}{2} (10 - 4) = 3 \n\n \begin{array}{|c|c|c|c|c|} \hline \text{Molecule} & \text{O}_2^{-} & \text{O}_2 & \text{O}_2^{+} & \text{N}_2 \\ \hline \text{Bond order} & 1.5 & 2.0 & 2.5 & 3.0 \\ \hline \end{array} \n\n \text{Arranging in increasing order of bond order: } \text{O}_2^{-} < \text{O}_2 < \text{O}_2^{+} < \text{N}_2 \n\n \text{Therefore, the correct option is 2.}

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}