Import Question JSON

Current Question (ID: 10132)

Question:
$\text{The moment of inertia of a uniform circular disc of radius 'R' and mass 'M' about an axis touching the disc at its diameter and normal to the disc will be:}$
Options:
  • 1. $\frac{3}{2}MR^2$
  • 2. $\frac{1}{2}MR^2$
  • 3. $MR^2$
  • 4. $\frac{2}{5}MR^2$
Solution:
$\text{Moment of inertia of a uniform circular disc about an axis through its center and perpendicular to its plane is } I_C = \frac{1}{2}MR^2$ $\text{Moment of inertia of a uniform circular disc about an axis touching the disc at its diameter and normal to the disc is I.}$ $I = I_C + Mh^2 = \frac{1}{2}MR^2 + MR^2 = \frac{3}{2}MR^2$ $\text{[Using theorem of parallel axes]}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}