Import Question JSON

Current Question (ID: 10210)

Question:
$\text{A body of mass M is moving on a circular track of radius r in such a way that its kinetic energy K depends on the distance travelled by the body s according to relation } K = \beta s, \text{ where } \beta \text{ is a constant. The angular acceleration of the body is:}$
Options:
  • 1. $\frac{\beta r}{M^2}$
  • 2. $\sqrt{\frac{\beta r}{M}}$
  • 3. $\frac{Mr^2}{\beta}$
  • 4. $\frac{\beta}{Mr}$
Solution:
\text{Given: Kinetic energy } K = \beta s\text{, where } s \text{ is the distance travelled} \text{We know that } K = \frac{1}{2}Mv^2\text{, so } \frac{1}{2}Mv^2 = \beta s \text{Therefore, } v^2 = \frac{2\beta s}{M} \text{For circular motion, the relationship between linear distance } s \text{ and angular displacement } \theta \text{ is } s = r\theta \text{The angular velocity } \omega = \frac{v}{r}\text{, so } v = r\omega \text{Substituting: } (r\omega)^2 = \frac{2\beta s}{M} \text{Since } s = r\theta\text{, we get } r^2\omega^2 = \frac{2\beta r\theta}{M} \text{Therefore, } \omega^2 = \frac{2\beta \theta}{Mr} \text{To find angular acceleration } \alpha = \frac{d\omega}{dt}\text{, we differentiate both sides with respect to time:} 2\omega \frac{d\omega}{dt} = \frac{2\beta}{Mr} \frac{d\theta}{dt} \text{Since } \frac{d\theta}{dt} = \omega\text{, we have } 2\omega \alpha = \frac{2\beta \omega}{Mr} \text{Therefore, } \alpha = \frac{\beta}{Mr} \text{The correct answer is option 4: } \frac{\beta}{Mr}

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}