Import Question JSON

Current Question (ID: 10278)

Question:
$\text{A uniform cube of mass } m \text{ and side } a \text{ is placed on a frictionless horizontal surface. A vertical force } F \text{ is applied to the edge as shown in the figure. Match the following (most appropriate choice).}$ $\text{List- I}$ $\text{(a) } mg/4 < F < mg/2$ $\text{(b) } F > mg/2$ $\text{(c) } F > mg$ $\text{(d) } F = mg/4$ $\text{List- II}$ $\text{(i) cube will move up.}$ $\text{(ii) cube will not exhibit motion.}$ $\text{(iii) cube will begin to rotate and slip at A.}$ $\text{(iv) normal reaction effectively at } a/3 \text{ from A, no motion.}$
Options:
  • 1. $\text{a - (i), b - (iv), c - (ii), d - (iii)}$
  • 2. $\text{a - (ii), b - (iii), c - (i), d - (iv)}$
  • 3. $\text{a - (iii), b - (i), c - (ii), d - (iv)}$
  • 4. $\text{a - (i), b - (ii), c - (iv), d - (iii)}$
Solution:
\text{Hint: Recall the concept of toppling.} \text{Step 1: Find torque due to } F \text{ and } mg \text{ about point A.} \text{Consider the given diagram, the moment of the force } F \text{ about point } A: \tau_1 = r \times F \text{ (anti-clockwise)} \text{The moment of weight } mg \text{ of the cube about point } A: \tau_2 = mg \times \frac{a}{2} \text{ (clockwise)} \text{Step 2: Equate the torques for no motion and find the value of } F. \text{Cube will not exhibit motion if } \tau_1 = \tau_2 \text{In this case, both torques will cancel the effect of each other:} F \times a = mg \times \frac{a}{2} \Rightarrow F = \frac{mg}{2} \text{Step 3: Find the value of } F \text{ for which the cube will rotate.} \text{Cube will rotate only when } \tau_1 > \tau_2: F \times a > mg \times \frac{a}{2} \Rightarrow F > \frac{mg}{2} \text{Step 4: If the normal reaction is acting at } \frac{a}{3} \text{ from point A and for no motion, find } F \text{ and interpret.} \text{Let the normal reaction act at } \frac{a}{3} \text{ from point A, then:} mg \times \frac{a}{3} = F \times a \text{ or } F = \frac{mg}{3} \text{ (for no motion)} \text{When } F = \frac{mg}{4}, \text{ which is less than } \frac{mg}{3}: F < \frac{mg}{3} \text{there will be no motion.} \text{Hence, option (2) is the correct answer.}

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}