Import Question JSON

Current Question (ID: 10428)

Question:
The height of a mercury barometer is $75 \text{ cm}$ at sea level and $50 \text{ cm}$ at the top of a hill. The ratio of the density of mercury to that of air is $10^4$. The height of the hill is:
Options:
  • 1. $250 \text{ m}$
  • 2. $2.5 \text{ km}$
  • 3. $1.25 \text{ km}$
  • 4. $750 \text{ m}$
Solution:
\text{The pressure difference between the sea level and the top of the hill is due to the weight of the air column of height } h\text{, where } h \text{ is the height of the hill.} \text{This pressure difference can also be calculated from the difference in the height of the mercury column in the barometer.} \text{Let } \Delta P \text{ be the difference in pressure between sea level and the top of the hill.} \Delta P = (h_1 - h_2) \times \rho_{\text{Hg}} \times g \text{where } h_1 = 75 \text{ cm and } h_2 = 50 \text{ cm}. h_1 - h_2 = 75 - 50 = 25 \text{ cm} = 25 \times 10^{-2} \text{ m} \Delta P = (25 \times 10^{-2}) \times \rho_{\text{Hg}} \times g \quad \text{...(i)} \text{The pressure difference due to a } h \text{ meter air column is given by:} \Delta P = h \times \rho_{\text{air}} \times g \quad \text{...(ii)} \text{By equating (i) and (ii), we get:} h \times \rho_{\text{air}} \times g = (25 \times 10^{-2}) \times \rho_{\text{Hg}} \times g \text{Cancelling } g \text{ from both sides:} h \times \rho_{\text{air}} = (25 \times 10^{-2}) \times \rho_{\text{Hg}} h = (25 \times 10^{-2}) \times \left(\frac{\rho_{\text{Hg}}}{\rho_{\text{air}}}\right) \text{We are given that the ratio of the density of mercury to that of air is } 10^4. \frac{\rho_{\text{Hg}}}{\rho_{\text{air}}} = 10^4 \text{Substituting this value:} h = 25 \times 10^{-2} \times 10^4 h = 25 \times 10^2 \text{ m} h = 2500 \text{ m} = 2.5 \text{ km} \text{Height of the hill} = 2.5 \text{ km}

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}