Import Question JSON

Current Question (ID: 10485)

Question:
$\text{The relative velocity of two adjacent layers of a liquid is 6 cm/s and the perpendicular distance between layers is 0.1 mm. The velocity gradient for liquid (in per second) is:}$
Options:
  • 1. $6$
  • 2. $0.6$
  • 3. $0.06$
  • 4. $600$
Solution:
\text{Hint: Use the formula of the velocity gradient.} \text{Step 1: Calculate } v_2 - v_1 v_2 - v_1 = 6 \text{ cm/s} \text{Step 2: Calculate velocity gradient} \text{Velocity gradient} = \frac{\Delta v}{\Delta x} = \frac{6 \text{ cm/s}}{0.1 \text{ mm}} = \frac{6 \text{ cm/s}}{0.01 \text{ cm}} = 600 \text{ s}^{-1}

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}