Import Question JSON

Current Question (ID: 10785)

Question:
$\text{A block of metal is heated to a temperature much higher than the room temperature and allowed to cool in a room free from air currents. Which of the following curves correctly represents the rate of cooling?}$
Options:
  • 1. $\text{Graph 1: Temperature vs Time showing a curved decrease starting high and leveling off}$
  • 2. $\text{Graph 2: Temperature vs Time showing an exponential decay curve}$ (Correct)
  • 3. $\text{Graph 3: Temperature vs Time showing a linear decrease}$
  • 4. $\text{Graph 4: Temperature vs Time showing an S-shaped curve}$
Solution:
$\text{According to Newton's law of cooling:}$ $\text{Rate of cooling} \propto \text{Temperature difference}$ $\Rightarrow -\frac{d\theta}{dt} \propto (\theta - \theta_0) \Rightarrow -\frac{d\theta}{dt} = \alpha(\theta - \theta_0) \text{ (}\alpha = \text{constant)}$ $\int_{\theta_i}^{\theta} \frac{d\theta}{(\theta - \theta_0)} = -\alpha \int_0^t dt \Rightarrow \theta = \theta_0 + (\theta_i - \theta_0)e^{-\alpha t}$ $\text{This relation tells us that the temperature of the body varies exponentially with time from } \theta_i \text{ to } \theta_0.$ $\text{Hence graph (2) is correct.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}