Import Question JSON

Current Question (ID: 11149)

Question:
$\text{The Earth's atmosphere contains both oxygen and nitrogen. The mass of an oxygen molecule is greater than that of a nitrogen molecule. On a certain day, the temperature of air in a room is 300 K.}$ $\text{Consider the following statements regarding the motion of oxygen and nitrogen molecules:}$ $\text{(A) Both gases have the same mean square velocity } (v^2).$ $\text{(B) Nitrogen molecules have a greater mean square velocity } (v^2) \text{ than oxygen molecules.}$ $\text{(C) Nitrogen molecules have a greater mean kinetic energy than oxygen molecules.}$ $\text{(D) Oxygen molecules have a greater mean kinetic energy than nitrogen molecules.}$ $\text{Choose the correct option from the options given below:}$
Options:
  • 1. $\text{(A) only}$
  • 2. $\text{(A) and (C) only}$
  • 3. $\text{(B) and (D) only}$
  • 4. $\text{(B) only}$ (Correct)
Solution:
$\text{Hint: } v_{\text{rms}} = \sqrt{\frac{3RT}{M}}$ $\text{Step 1: Compare their mean square velocities.}$ $\text{RMS velocity is given by:}$ $v_{\text{rms}} = \sqrt{\frac{3RT}{M}}$ $\text{Therefore, the mean square velocity is given by:}$ $\overline{v^2} = \frac{3RT}{M}$ $\Rightarrow \overline{v^2} \propto \frac{1}{M}$ $\Rightarrow \overline{v^2}_{\text{N}_2} > \overline{v^2}_{\text{O}_2} \quad [\because M_{\text{O}_2} > M_{\text{N}_2}]$ $\text{Therefore, nitrogen molecules have a greater mean square velocity than oxygen molecules.}$ $\text{Step 2: Compare their kinetic energies.}$ $\text{Mean kinetic energy is given by:}$ $K_{\text{avg}} = \frac{3}{2}kT$ $\text{Both gases are at the same temperature, so the mean kinetic energy of both gases will be the same.}$ $\text{Hence, option (4) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}