Import Question JSON

Current Question (ID: 11166)

Question:
$\text{Which one of the following gases possesses the largest internal energy?}$
Options:
  • 1. $2 \text{ moles of helium occupying } 1 \text{ m}^3 \text{ at } 300 \text{ K}$
  • 2. $56 \text{ kg of nitrogen at } 10^5 \text{ Nm}^{-2} \text{ and } 300 \text{ K}$ (Correct)
  • 3. $8 \text{ grams of oxygen at } 8 \text{ atm and } 300 \text{ K}$
  • 4. $6 \times 10^{26} \text{ molecules of argon occupying } 40 \text{ m}^3 \text{ at } 900 \text{ K}$
Solution:
$\text{Hint: } U = nC_V T = n \left(\frac{f}{2}\right) RT$ $\text{Step 1: Find the internal energy of 2 moles of helium at 300 K.}$ $\text{For monoatomic gas } \left(C_V = \frac{3}{2} R\right)$ $U = nC_V \Delta T$ $\Rightarrow U = 2 \times \frac{3}{2} R \times 300 = 900R \text{ J}$ $\text{Step 2: Find the internal energy of 56 kg of nitrogen at } 10^5 \text{ Nm}^{-2} \text{ and 300 K.}$ $\text{The molar mass of nitrogen } (\text{N}_2) = 28 \text{ gm/mol}$ $\text{The number of moles in the gas is given by;}$ $n = \frac{56,000 \text{ g}}{28 \text{ g/mol}} = 2000 \text{ mol}$ $\text{For diatomic gas } \left(C_V = \frac{5}{2} R\right)$ $U = nC_V \Delta T$ $\Rightarrow U = 2000 \times \frac{5}{2} R \times 300 = 1500 \times 10^3 R \text{ J}$ $\text{Step 3: Find the internal energy of 8 grams of oxygen at 8 atm and 300 K.}$ $\text{The molar mass of oxygen } (\text{O}_2) = 32 \text{ gm/mol}$ $\text{The number of moles in 8 grams of oxygen is given by;}$ $n = \frac{8 \text{ g}}{32 \text{ g/mol}} = 0.25 \text{ mol}$ $\text{For diatomic gas } \left(C_V = \frac{5}{2} R\right)$ $U = nC_V \Delta T$ $\Rightarrow U = 0.25 \times \frac{5}{2} R \times 300 = 187.5R \text{ J}$ $\text{Step 4: Find the internal energy of } 6 \times 10^{26} \text{ molecules of argon occupying 40 m}^3 \text{ at 900 K.}$ $1 \text{ mol} = 6.022 \times 10^{23} \text{ molecules}$ $\text{For Monoatomic gas } \left(C_V = \frac{3}{2} R\right)$ $\text{The number of moles in argon gas is given by;}$ $n = \frac{6 \times 10^{26}}{6.022 \times 10^{23}} \approx 10^3 \text{ mol}$ $U = nC_V \Delta T$ $\Rightarrow U = 10^3 \times \frac{3}{2} R \times 900 = 1350 \times 10^3 R \text{ J}$ $\text{Therefore, the gas with the largest internal energy is 56 kg of nitrogen at } 10^5 \text{ Nm}^{-2} \text{ and 300 K.}$ $\text{Hence, option (2) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}