Import Question JSON

Current Question (ID: 11577)

Question:
The electrons which are coming from oxidation of NADH are transferred from complex I to
Options:
  • 1. Ubiquinol
  • 2. Ubiquinone
  • 3. Ubiquinal
  • 4. Ubiquitous
Solution:
The electrons which are coming from the oxidation of NADH are transferred from complex I to ubiquinone (also known as coenzyme Q or simply Q). Ubiquinone is a lipid-soluble molecule that is located in the inner mitochondrial membrane and serves as an electron carrier between complex I and complex III of the electron transport chain. In its reduced form, ubiquinone is called ubiquinol (QH₂) and can transfer its electrons to complex III via cytochrome b.

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}