Import Question JSON

Current Question (ID: 16493)

Question:
$\text{The variation of electrostatic potential with radial distance } r \text{ from the centre of a positively charged metallic thin shell of radius } R \text{ is given by the graph:}$
Options:
  • 1. $\text{Graph 1}$
  • 2. $\text{Graph 2}$
  • 3. $\text{Graph 3}$
  • 4. $\text{Graph 4}$
Solution:
$\text{Hint: For conducting sphere potential is constant inside the sphere.}$ $\text{Explanation: As the electric field inside the charged conducting sphere is zero, the potential will be constant for the inside part. The electric potential decreases for the outside part as the conducting sphere behaves like a point charge concentrated at the centre. Therefore,}$ $V = \frac{KQ}{R} \text{ for } r \leq R$ $V = \frac{KQ}{r} \text{ for } r > R$ $\text{Hence, option (2) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}