Import Question JSON
Current Question (ID: 16531)
Question:
$\text{An electric dipole with dipole moment } \vec{p} = \left(3\hat{i} + 4\hat{j}\right) \times 10^{-30} \text{ C-m is placed in an electric field } \vec{E} = 4000\hat{i} \text{ N/C. An external agent turns the dipole slowly until its electric dipole moment becomes } \left(-4\hat{i} + 3\hat{j}\right) \times 10^{-30} \text{ C-m.}$ $\text{The work done by the external agent is equal to:}$
Options:
-
1. $4 \times 10^{-28} \text{ J}$
-
2. $-4 \times 10^{-28} \text{ J}$
-
3. $2.8 \times 10^{-26} \text{ J}$
-
4. $-2.8 \times 10^{-26} \text{ J}$
Solution:
$\text{Hint: Work done by the external agent = change in potential energy of the dipole.}$ $\text{Step 1: Draw the diagram.}$ $\text{Step 2: Find the net dipole moment}$ $\vec{p}_i = \left(3\hat{i} + 4\hat{j}\right) \times 10^{-30} \text{ C-m}$ $\vec{p}_f = \left(-4\hat{i} + 3\hat{j}\right) \times 10^{-30} \text{ C-m}$ $|\vec{p}| = 5 \times 10^{-30} \text{ C-m}$ $\text{Step 3: Use the geometry to find the angle}$ $\theta_1 = 53^\circ$ $\theta_2 = 180^\circ - 37^\circ$ $\cos(180^\circ - 37^\circ) = -\cos 37^\circ$ $\text{Step 3: Find the work done.}$ $W = -pE\cos\theta_2 - (-pE\cos\theta_1)$ $= pE[\cos 37^\circ + \cos 53^\circ]$ $= 2.8 \times 10^{-26} \text{ J}$ $\text{Alternating explanation:}$ $\text{As, } U = -\vec{p} \cdot \vec{E}$ $U_i = -[(3 \times 10^{-30} \hat{i} + 4 \times 10^{-30} \hat{j}) \cdot (4000\hat{i})]$ $= -12000 \times 10^{-30}$ $= -1.2 \times 10^{-26} \text{ J}$ $U_f = -[(-4 \times 10^{-30} \hat{i} + 3 \times 10^{-30} \hat{j}) \cdot (4000\hat{i})]$ $= 16000 \times 10^{-30}$ $= 1.6 \times 10^{-26} \text{ J}$ $\text{Work done by an external agent,}$ $W = U_f - U_i$ $= 1.6 \times 10^{-26} + 1.2 \times 10^{-26}$ $= 2.8 \times 10^{-26} \text{ J}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.