Import Question JSON

Current Question (ID: 16577)

Question:
$\text{A parallel plate capacitor is made of two dielectric blocks in series. One of the blocks has thickness } d_1 \text{ and dielectric constant } K_1 \text{ and the other has thickness } d_2 \text{ and dielectric constant } K_2, \text{ as shown in the figure. This arrangement can be thought of as a dielectric slab of thickness } d = d_1 + d_2 \text{ and effective dielectric constant } K. \text{ The } K \text{ is:}$
Options:
  • 1. $\frac{K_1 d_1 + K_2 d_2}{d_1 + d_1}$
  • 2. $\frac{K_1 d_1 + K_2 d_2}{K_1 + K_2}$
  • 3. $\frac{K_1 K_2 (d_1 + d_2)}{K_1 d_2 + K_2 d_1}$
  • 4. $\frac{2 K_1 K_2}{K_1 + K_2}$
Solution:
$\text{Hint: The two capacitors are in a series combination.}$ $\text{Step 1: Find the capacitance of individual capacitors.}$ $\text{The capacitance of a parallel plate capacitor filled with a dielectric block of thickness } d_1 \text{ and dielectric constant } K_1 \text{ is given by;}$ $C_1 = \frac{K_1 \varepsilon_0 A}{d_1}$ $\text{Similarly, the capacitance of a parallel plate capacitor filled with a dielectric block of thickness } d_2 \text{ and dielectric constant } K_2 \text{ is given by;}$ $C_2 = \frac{K_2 \varepsilon_0 A}{d_2}$ $\text{Step 2: Find the equivalent capacitance.}$ $\text{Since the two capacitors are in a series combination, the equivalent capacitance is given by;}$ $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$ $C = \frac{C_1 + C_2}{C_1 C_2} = \frac{K_1 \varepsilon_0 A}{d_1} + \frac{K_2 \varepsilon_0 A}{d_2}$ $C = \frac{K_1 \varepsilon_0 A}{d_1} + \frac{K_2 \varepsilon_0 A}{d_2}$ $\Rightarrow C = \frac{K_1 K_2 \varepsilon_0 A}{K_1 d_2 + K_2 d_1}$ $\text{Step 3: Find the equivalent dielectric constant.}$ $\text{But the equivalent capacitances are given by;}$ $C = \frac{K \varepsilon_0 A}{d_1 + d_2}$ $\text{On comparing we have,}$ $\Rightarrow K = \frac{K_1 K_2 (d_1 + d_2)}{K_1 d_2 + K_2 d_1}$ $\text{Hence, option (3) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}