Import Question JSON
Current Question (ID: 16982)
Question:
$A \ 1 \ \text{m} \ \text{long} \ \text{metallic} \ \text{rod} \ \text{is} \ \text{rotating} \ \text{with} \ \text{an} \ \text{angular} \ \text{frequency} \ \text{of} \ 400 \ \text{rad/s} \ \text{about} \ \text{an} \ \text{axis} \ \text{normal} \ \text{to} \ \text{the} \ \text{rod} \ \text{passing} \ \text{through} \ \text{its} \ \text{one} \ \text{end.}$ $\text{The} \ \text{other} \ \text{end} \ \text{of} \ \text{the} \ \text{rod} \ \text{is} \ \text{in} \ \text{contact} \ \text{with} \ \text{a} \ \text{circular} \ \text{metallic} \ \text{ring.}$ $\text{A} \ \text{constant} \ \text{and} \ \text{uniform} \ \text{magnetic} \ \text{field} \ \text{of} \ 0.5 \ \text{T} \ \text{parallel} \ \text{to} \ \text{the} \ \text{axis} \ \text{exists} \ \text{everywhere.}$ $\text{The} \ \text{emf} \ \text{induced} \ \text{between} \ \text{the} \ \text{centre} \ \text{and} \ \text{the} \ \text{ring} \ \text{is:}$
Options:
-
1. $200 \ \text{V}$
-
2. $100 \ \text{V}$
-
3. $50 \ \text{V}$
-
4. $150 \ \text{V}$
Solution:
$\text{Hint:} \ \text{One} \ \text{end} \ \text{of} \ \text{the} \ \text{rod} \ \text{has} \ \text{zero} \ \text{linear} \ \text{velocity,} \ \text{while} \ \text{the} \ \text{other} \ \text{end} \ \text{has} \ \text{a} \ \text{linear} \ \text{velocity} \ \text{of} \ \omega l$ $\text{Step} \ 1: \ \text{Calculate} \ \text{emf} \ \text{induced} \ \text{in} \ \text{the} \ \text{rod.}$ $\text{Consider} \ \text{the} \ \text{rod} \ \text{is} \ \text{consisting} \ \text{of} \ \text{so} \ \text{many} \ \text{very} \ \text{small} \ \text{rods.}$ $\text{Consider} \ \text{one} \ \text{very} \ \text{small} \ \text{rod} \ \text{of} \ \text{length} \ dx \ \text{after} \ x.$ $\text{velocity} \ \text{of} \ \text{small} \ \text{rod} \ \text{of} \ \text{length} \ dx \ \text{perpendicular}$ $v = x \omega$ $\text{Emf} \ \text{induced} \ \text{in} \ \text{the} \ \text{small} \ \text{rod} \ \text{of} \ dx \ \text{length}$ $d\varepsilon = B(x\omega) \ dx$ $\text{So} \ \text{emf} \ \text{induced} \ \text{in} \ \text{the} \ \text{full} \ \text{rod} \ \text{of} \ \text{length} \ l$ $\int_{0}^{\varepsilon_{AB}} d\varepsilon = B\omega \int_{0}^{1} x \ dx$ $\varepsilon_{AB} = \frac{B\omega l^2}{2}$ $\text{Step} \ 2: \ \text{Put} \ \text{the} \ \text{values} \ \text{and} \ \text{calculate} \ \text{emf} \ \text{induced} \ \text{between} \ \text{centre} \ \text{of} \ \text{the} \ \text{ring.}$ $\varepsilon_{AB} = \frac{0.5 \times 400 \times 1^2}{2} = 100 \ \text{V}.$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.