Import Question JSON

Current Question (ID: 17495)

Question:
$\text{A fish at a depth } y \text{ inside the water is seeing a bird.}$ $\text{The bird is at a height } x \text{ above the water level.}$ $\text{If the refractive index of water is } \mu, \text{ then the apparent distance of bird as seen by the fish is:}$
Options:
  • 1. $x + \mu y$
  • 2. $y + \mu x$
  • 3. $x + \frac{y}{\mu}$
  • 4. $y + \frac{x}{\mu}$
Solution:
$\text{The apparent distance of an object in a different medium is given by the formula:}$ $\text{Apparent distance} = \text{Real distance} \times \text{Refractive index}$ $\text{Here, the real distance of the bird from the fish is } x \text{ and the refractive index is } \mu.$ $\text{Thus, the apparent distance is } y + \mu x.$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}