Import Question JSON

Current Question (ID: 17509)

Question:
$\text{For the given incident ray as shown in the figure, in the condition of the total}$ $\text{internal reflection of this ray, the minimum refractive index of the prism will be:}$
Options:
  • 1. $\frac{\sqrt{3} + 1}{2}$
  • 2. $\frac{\sqrt{2} + 1}{2}$
  • 3. $\frac{\sqrt{3}}{2}$
  • 4. $\frac{\sqrt{7}}{6}$
Solution:
$\text{Hint: } \sin \theta_c = \frac{1}{\mu}$ $\text{Step: Find the refractive index of the prism.}$ $\text{Let the refractive index of the prism is } \mu.$ $\text{The condition of total internal refraction takes place at point } P \text{ as shown in}$ $\text{the figure below as the ray goes from a denser medium to a rarer medium.}$ $\text{By applying Snell's law at point } P \text{ we get;} \mu \sin \theta = 1 \times \sin 90^\circ$ $\Rightarrow \mu \sin \theta = \text{constant} \quad \cdots (1)$ $\text{By geometry, } r + \theta = 90^\circ$ $\Rightarrow \theta = 90^\circ - r$ $\Rightarrow \mu \sin (90^\circ - r) = 1$ $\Rightarrow \mu \cos r = 1$ $\Rightarrow \cos r = \frac{1}{\mu} \quad \cdots (2)$ $\text{By applying Snell's law at } Q, \text{ we get;} 1 \sin 45^\circ = \mu \sin r$ $\Rightarrow \mu \sin r = \frac{1}{\sqrt{2}}$ $\Rightarrow \mu \sqrt{1 - \cos^2 r} = \frac{1}{\sqrt{2}}$ $\Rightarrow \mu \sqrt{1 - \frac{1}{\mu^2}} = \frac{1}{\sqrt{2}} \quad \left[ \cos r = \frac{1}{\mu} \right]$ $\Rightarrow \mu^2 \left( 1 - \frac{1}{\mu^2} \right) = \frac{1}{2}$ $\Rightarrow \mu^2 - 1 = \frac{1}{2} \Rightarrow \mu^2 = \frac{3}{2}$ $\Rightarrow \mu = \sqrt{\frac{3}{2}}$ $\text{Hence, option (3) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}