Import Question JSON

Current Question (ID: 17942)

Question:
$\text{Sodium has body-centered packing. The distance between the two nearest atoms is } 3.7 \, \text{Å. The lattice parameter is:}$
Options:
  • 1. $6.8 \, \text{Å}$
  • 2. $4.3 \, \text{Å}$
  • 3. $3.0 \, \text{Å}$
  • 4. $8.5 \, \text{Å}$
Solution:
$\text{For BCC lattice, } R = \frac{\sqrt{3}}{4} a$ $\text{In a body centered cubic lattice structure (bcc) the distance of the neighboring atoms is given by:}$ $R = \frac{\sqrt{3}}{4} a \quad \cdots (i)$ $\text{where, } a \text{ is the lattice parameter.}$ $\text{The distance between the two nearest atoms is represented by } 2R = 3.7 \, \text{Å}$ $\text{By putting this value of } R \text{ in above equation (i) we get:}$ $a = \frac{2 \times 3.7}{\sqrt{3}} = 4.3 \, \text{Å}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}