Import Question JSON

Current Question (ID: 17947)

Question:
$\text{Iron exhibits bcc structure at room temperature. Above } 900 \, ^\circ \text{C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at } 900 \, ^\circ \text{C is:}$ $\text{(Molar mass and atomic radii of iron remain constant with temperature)}$
Options:
  • 1. $\frac{\sqrt{3}}{\sqrt{2}}$
  • 2. $\frac{4\sqrt{3}}{3\sqrt{2}}$
  • 3. $\frac{3\sqrt{3}}{4\sqrt{2}}$
  • 4. $\frac{1}{2}$
Solution:
$d = \frac{ZM}{a^3N_A}$ $\text{Consider the bcc unit cell. The density of iron in bcc } d_1 = \frac{Z_1M}{a_1^3N_A}$ $\text{Substituting the values, we get } d_1 = \frac{2M}{\left(\frac{4}{\sqrt{3}}r\right)^3}N_A$ $\text{Consider the fcc unit cell. The density of iron in fcc } d_2 = \frac{Z_2M}{a_2^3N_A}$ $\text{Substituting the values, we get } d_2 = \frac{4M}{\left(\frac{4}{\sqrt{2}}r\right)^3}N_A$ $\text{Now we have to calculate the ratio of iron at room temperature and at } 900 \, ^\circ \text{C}$ $\frac{d_1}{d_2} = \frac{\frac{2M}{\left(\frac{4}{\sqrt{3}}r\right)^3}N_A}{\frac{4M}{\left(\frac{4}{\sqrt{2}}r\right)^3}N_A}$ $\text{Taking reciprocal, we get}$ $\frac{d_1}{d_2} = \frac{2M}{4M} \times \frac{\left(\frac{4}{\sqrt{2}}r\right)^3}{\left(\frac{4}{\sqrt{3}}r\right)^3}$ $\text{Canceling the common terms we get}$ $\frac{d_1}{d_2} = \frac{\left(\frac{4}{\sqrt{2}}r\right)^3}{\left(\frac{4}{\sqrt{3}}r\right)^3} \times \frac{2}{4} = \left(\frac{4}{\sqrt{2}}\right)^3 \times \left(\frac{\sqrt{3}}{4}\right)^3 \times \frac{1}{2} = \frac{\sqrt{3}}{\sqrt{3}} \times \frac{1}{2}$ $\text{On simplification,}$ $\frac{d_1}{d_2} = \frac{3\sqrt{3}}{2\sqrt{2}} \times \frac{1}{2} = \frac{3\sqrt{3}}{4\sqrt{2}}$ $\text{Hence the ratio of density is } \frac{3\sqrt{3}}{4\sqrt{2}}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}