Import Question JSON
Current Question (ID: 18271)
Question:
$\text{The decomposition of NH}_3 \text{ on a platinum surface is a zero-order reaction. The rates of production of N}_2 \text{ and H}_2 \text{ will be respectively:}$ $\text{(given ; } k = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{ L s}^{-1} \text{)}$
Options:
-
1. $2.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1} \text{ and } 5.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
-
2. $2.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1} \text{ and } 7.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
-
3. $1.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1} \text{ and } 4.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
-
4. $0.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1} \text{ and } 3.5 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$
Solution:
$\text{Hint: For zero order reaction, rate of reaction = rate constant}$ $\text{Explanation:}$ $\text{Step 1:}$ $\text{The decomposition of NH}_3 \text{ on the platinum surface is represented by the following equation.}$ $2 \text{NH}_3(g) \rightarrow \text{N}_2(g) + 3\text{H}_2(g)$ $\text{Therefore,}$ $\text{Rate} = -\frac{1}{2} \frac{d[\text{NH}_3]}{dt} = \frac{d[\text{N}_2]}{dt} = \frac{1}{3} \frac{d[\text{H}_2]}{dt}$ $\text{Step 2:}$ $\text{However, it is given that the reaction is of zero order.}$ $\text{Therefore,}$ $-\frac{1}{2} \frac{d[\text{NH}_3]}{dt} = \frac{d[\text{N}_2]}{dt} = \frac{1}{3} \frac{d[\text{H}_2]}{dt} = K$ $= 2.5 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$ $\text{Step 3:}$ $\text{Calculate the rate of production of N}_2 \text{ and H}_2$ $\text{Therefore, the rate of production of N}_2 \text{ is}$ $\frac{d[\text{NH}_3]}{dt} = 2.5 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$ $\text{And, the rate of production of H}_2 \text{ is}$ $\frac{d[\text{H}_2]}{dt} = 3 \times 2.5 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$ $= 7.5 \times 10^{-4} \text{ mol L}^{-1}\text{s}^{-1}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.