Import Question JSON
Current Question (ID: 18285)
Question:
$\text{For the reaction } 2\text{N}_2\text{O}_5(g) \rightarrow 4\text{NO}_2(g) + \text{O}_2(g), \text{ the concentration of } \text{NO}_2$ $\text{increases by } 2.4 \times 10^{-2} \text{ mol L}^{-1}$ $\text{in 6 seconds. The rate of appearance of } \text{NO}_2 \text{ and the rate of disappearance of } \text{N}_2\text{O}_5, \text{ respectively, are:}$
Options:
-
1. $2 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}, 4 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}$
-
2. $2 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}, 1 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}$
-
3. $2 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}, 2 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}$
-
4. $4 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}, 2 \times 10^{-3} \text{ mol L}^{-1} \text{ sec}^{-1}$
Solution:
$\text{HINT: Rate of reaction} = -\frac{1}{2} \frac{\Delta [\text{N}_2\text{O}_5]}{\Delta t} = \frac{1}{4} \frac{\Delta [\text{NO}_2]}{\Delta t}$ $\text{Explanation:}$ $\text{Since } \text{NO}_2 \text{ is the product, therefore, its concentration when } t = 0 \text{ is zero.}$ $\therefore \text{Rate of appearance of } \text{NO}_2 \text{ i.e.}$ $\frac{\Delta [\text{NO}_2]}{\Delta t} = \frac{2.4 \times 10^{-2}}{6} = 4 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$ $\text{Thus, rate of reaction} = \frac{1}{4} \frac{\Delta [\text{NO}_2]}{\Delta t} = \frac{4 \times 10^{-3}}{4} \text{ mol lit}^{-1} \text{ sec}^{-1} = 1 \times 10^{-3} \text{ mol lit}^{-1} \text{ sec}^{-1}$ $\therefore \text{Rate of disappearance of } \text{N}_2\text{O}_5 \text{ i.e.}$ $\frac{\Delta [\text{N}_2\text{O}_5]}{\Delta t} = 2 \times \text{Rate of reaction} = 2 \times 10^{-3} \text{ mol lit}^{-1} \text{ sec}^{-1}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.