Import Question JSON

Current Question (ID: 18522)

Question:
$\text{Select the correct option based on statements below:}$ $\text{Assertion (A): The zone refining method is very useful for producing semiconductors.}$ $\text{Reason (R): Semiconductors are of high purity.}$
Options:
  • 1. $\text{Both (A) and (R) are true and (R) is the correct explanation of (A).}$
  • 2. $\text{Both (A) and (R) are true but (R) is not the correct explanation of (A).}$
  • 3. $\text{(A) is true but (R) is false.}$
  • 4. $\text{(A) is false but (R) is true.}$
Solution:
$\text{Hint: This method is based on the principle that the impurities are more soluble in the melt than in the solid-state of the metal.}$ $\text{The zone refining method is very useful for producing semiconductors of high purity as in this process pure metal crystallises while impurities pass on into adjacent molten zone when the impure metal rod is heated.}$ $\text{This method is very useful for producing semiconductors and other metals of very high purity, e.g., germanium, silicon, boron, gallium and indium.}$ $\text{Hence, both assertion and reason are true but the reason is not the correct explanation of assertion.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}