Import Question JSON

Current Question (ID: 18726)

Question:
The total number of geometrical isomers possible for an octahedral complex of $[\text{MA}_2 \text{B}_2 \text{C}_2]$ are: $(\text{M} = \text{transition metal}; \text{A, B and C are monodentate ligands})$
Options:
  • 1. 3 (Correct)
  • 2. 4
  • 3. 5
  • 4. 6
Solution:
$\text{HINT: } [\text{MA}_2 \text{B}_2 \text{C}_2] \text{ have total 5 geometrical isomers.}$ $\text{Explanation:}$ $\text{STEP 1: Geometrical isomerism is a type of stereoisomerism having the same molecular formula and same structure but differ in the relative arrangement of atoms.}$ $\text{STEP 2: Possible isomers for given complex are:}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}