Import Question JSON

Current Question (ID: 19149)

Question:
$\text{A ball is released from rest from point } P \text{ of a smooth semi-spherical}$ $\text{vessel as shown in the figure. The ratio of the centripetal force and}$ $\text{the normal reaction on the ball at point } Q \text{ is } A \text{ while the angular}$ $\text{position of point } Q \text{ is } \alpha \text{ with respect to point } P. \text{ Which of the}$ $\text{following graphs represents the correct relation between } A \text{ and } \alpha$ $\text{ when the ball goes from point } Q \text{ to point } R?$
Options:
  • 1. $\begin{array}{c} A \\ \alpha \end{array}$
  • 2. $\begin{array}{c} A \\ \alpha \end{array}$
  • 3. $\begin{array}{c} A \\ \alpha \end{array}$
  • 4. $\begin{array}{c} A \\ \alpha \end{array}$
Solution:
$\text{Hint: } a_c = \frac{mv^2}{r}$ $\text{Step 1: Find the velocity of the ball when the angular position is } \alpha.$ $mgh = \frac{1}{2}mv^2$ $\Rightarrow mg(r \sin \alpha) = \frac{1}{2}mv_Q^2 \quad [h = r \sin \alpha]$ $\Rightarrow v_Q^2 = 2gr \sin \alpha \quad \ldots (1)$ $\text{Step 2: Find the force at } Q.$ $\text{The force at } Q \text{ is given by:}$ $F_c = \frac{mv_Q^2}{r}$ $\Rightarrow F_c = \frac{m(2gr \sin \alpha)}{r}$ $\Rightarrow F_c = 2mg \sin \alpha \quad \ldots (2)$ $\text{Step 3: Find the normal force acting on the ball at } Q.$ $\text{The normal reaction at point } Q \text{ is given by:}$ $N - mg \sin \alpha = F_c$ $\Rightarrow N - mg \sin \alpha = 2mg \sin \alpha$ $\Rightarrow N = 3mg \sin \alpha \quad \ldots (3)$ $\text{Step 4: Find the value of } A \text{ and find the correct graph.}$ $\text{The value of } A \text{ is given as the ratio of centripetal force and the}$ $\text{normal reaction on the ball at point } Q \text{ i.e., } A = \frac{F}{N}$ $\Rightarrow A = \frac{2mg \sin \alpha}{3mg \sin \alpha} = \frac{2}{3}$ $\Rightarrow A = \frac{2}{3}$ $\text{Therefore, the value of } A \text{ is constant and independent of the angle } \alpha$ $\text{and the correct graph is shown below;}$ $\begin{array}{c} A \\ \alpha \end{array}$ $\text{Hence, option (3) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}