Import Question JSON

Current Question (ID: 19238)

Question:
$\text{A particle of mass } m \text{ is moving along the } x\text{-axis with an initial velocity } ui\hat{}. \text{ It undergoes an elastic collision with another particle of mass } 10m, \text{ which is initially at rest. After the collision, the first particle retains half of its initial kinetic energy (as shown in the figure). If } \sin \theta_1 = \sqrt{n} \sin \theta_2, \text{ then the value of } n \text{ is:}$
Options:
  • 1. $5$
  • 2. $10$
  • 3. $15$
  • 4. $20$
Solution:
$\text{Hint: Apply conservation of momentum.}$ $\text{Step: Find the value of the } n. \text{ The collision of the particle is shown in the figure below;} \text{By conserving the momentum of the body along } y \text{ direction we get;} m_1u_1 \sin \theta_1 = m_2u_2 \sin \theta_2 \text{ i.e., } mu_1 \sin \theta_1 = 10mu_2 \sin \theta_2 \Rightarrow u_1 \sin \theta_1 = 10u_2 \sin \theta_2 \quad \cdots (1) \text{According to the question;} k_{f_{m_1}} = \frac{1}{2} k_{i_{m_1}} \Rightarrow \frac{1}{2} mu_1^2 = \frac{1}{2} \times \frac{1}{2} mu^2 \Rightarrow u_1 = \frac{u}{\sqrt{2}} \quad \cdots (2) \text{As the collision is elastic in nature i.e., } k_i = k_f \frac{1}{2} mu^2 = \frac{1}{2} mu_1^2 + \frac{1}{2} \cdot 10m \cdot u_2^2 \Rightarrow \frac{1}{2} mu^2 = \frac{1}{2} mu_1^2 + \frac{1}{2} \cdot 10m \cdot u_2^2 \Rightarrow \frac{1}{4} mu^2 = 10 \times mu_2^2 \Rightarrow u_2 = \frac{u}{\sqrt{20}} \quad \cdots (3) \text{By putting values of } u_1 \text{ and } u_2 \text{ in equation } (1) \text{ we get;} \frac{u}{\sqrt{2}} \sin \theta_1 = 10 \cdot \frac{u}{\sqrt{20}} \sin \theta_2 \Rightarrow \sin \theta_1 = \sqrt{10} \sin \theta_2 \Rightarrow n = 10 \text{Hence, option } (2) \text{ is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}