Import Question JSON

Current Question (ID: 19239)

Question:
$\text{A particle moves unidirectionally on a horizontal plane, under a constant power-supplying energy source. The displacement-time } (s-t) \text{ graph that describes the motion of the particle is: (graphs are drawn schematically and are not to scale)}$
Options:
  • 1. $\text{Graph 1}$
  • 2. $\text{Graph 2}$
  • 3. $\text{Graph 3}$
  • 4. $\text{Graph 4}$
Solution:
$\text{Hint: } \frac{d(K.E)}{dt} = \text{Power}(P)$ $\text{Step 1: Find the velocity variation as a function of time.}$ $\text{As the particle is moving with constant power i.e., } P = P_0$ $\text{The power of the particle is given by; } P = \frac{dK}{dt}$ $K = P_0t \Rightarrow \frac{1}{2}mv^2 = P_0t \Rightarrow v = \sqrt{\frac{2P_0t}{m}}$ $\Rightarrow v \propto \sqrt{t}$ $\text{Step 2: Find the correct graph for displacement-time } (s-t).$ $\Rightarrow \frac{ds}{dt} = kt^{\frac{1}{2}} \ldots (1) \quad [\text{where } k \left( k = \sqrt{\frac{2P_0}{m}} \right) \text{ is a constant}]$ $\text{Integrate both sides equation (1), we get;}$ $\Rightarrow \int ds = \int kt^{\frac{1}{2}} dt$ $\Rightarrow s = k't^{\frac{3}{2}} \quad \left[ k' = \frac{2}{3}k \right]$ $\Rightarrow s \propto t^{\frac{3}{2}}$ $\text{Therefore, the correct graph for displacement-time } (s-t) \text{ is shown in the figure below,}$ $\text{Hence, option (1) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}