Import Question JSON

Current Question (ID: 19249)

Question:
$\text{A small bob, attached to one end of a thin string of length } 1 \text{ m, is performing vertical circular motion.}$ $\text{The ratio of the maximum tension to the minimum tension in the string is } 5 : 1.$ $\text{What is the bob's velocity at the highest point?}$ $\text{(take } g = 10 \text{ m/s}^2)$
Options:
  • 1. $2 \text{ m/s}$
  • 2. $5 \text{ m/s}$
  • 3. $6 \text{ m/s}$
  • 4. $9 \text{ m/s}$
Solution:
$\text{Hint: } T_{\text{max}} = mg + \frac{mv_1^2}{l} \text{ and } T_{\text{min}} + mg = \frac{mv_2^2}{l}$ $\text{Step: Find the velocity of the bob at the highest position.}$ $\text{Let the speed of the bob at the lowest position be } v_1 \text{ and at the highest position be } v_2.$ $\text{The maximum tension is at the lowest position and minimum tension at the highest position.}$ $\text{Now, using the conservation of mechanical energy we get:}$ $\frac{1}{2}mv_1^2 = \frac{1}{2}mv_2^2 + mg2l$ $\Rightarrow v_1^2 = v_2^2 + 4gl \quad \ldots (1)$ $\text{Now } T_{\text{max}} - mg = \frac{mv_1^2}{l}$ $\Rightarrow T_{\text{max}} = mg + \frac{mv_1^2}{l}$ $T_{\text{min}} + mg = \frac{mv_2^2}{l}$ $\Rightarrow T_{\text{min}} = \frac{mv_2^2}{l} - mg$ $\Rightarrow \frac{mv_2^2}{l} - mg = \frac{1}{5} \left[ mg + \frac{mv_1^2}{l} \right]$ $\Rightarrow mg + \frac{mv_1^2}{l} = \left[ \frac{mv_2^2}{l} - mg \right] 5$ $\Rightarrow mg + \frac{m}{l} [v_2^2 + 4gl] = \frac{5mv_2^2}{l} - 5mg$ $\Rightarrow mg + \frac{mv_2^2}{l} + 4mg = \frac{5mv_2^2}{l} - 5mg$ $\Rightarrow 10mg = \frac{4mv_2^2}{l}$ $\Rightarrow v_2^2 = \frac{10 \times 10 \times 1}{4}$ $\Rightarrow v_2^2 = 25$ $\Rightarrow v_2 = 5 \text{ m/s}$ $\text{Thus, the velocity of the bob at the highest position is } 5 \text{ m/s.}$ $\text{Hence, option (2) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}