Import Question JSON

Current Question (ID: 19968)

Question:
$\text{The pressure wave } P = 0.01 \sin(1000t - 3x) \text{ Nm}^{-2}, \text{ corresponds to the sound produced by a vibrating blade on a day when the atmospheric temperature is } 0^{\circ} \text{C.}$ $\text{On some other day, when the temperature is } T, \text{ the speed of sound produced by the same blade and at the same frequency is found to be } 336 \text{ ms}^{-1}. \text{ The approximate value of } T \text{ is:}$
Options:
  • 1. $4^{\circ} \text{C}$
  • 2. $12^{\circ} \text{C}$
  • 3. $11^{\circ} \text{C}$
  • 4. $15^{\circ} \text{C}$
Solution:
$\text{Hint: } v \propto \sqrt{T}$ $\text{Step 1: Find the value of the temperature } T \text{ in } ^{\circ}\text{C.}$ $\text{The speed of sound at the temperature } T \text{ is } v_1 = 336 \text{ m/s.}$ $\text{By comparing given pressure wave } (P = 0.01 \sin[1000t - 3x] \text{ Nm}^{-2}) \text{ with the general equation } (P = P_0 \sin(\omega t - kx)) \text{ we get;}$ $\omega = 1000 \text{ rad/s}, k = 3 \text{ rad m}^{-1}$ $\text{Speed of sound at } 0^{\circ} \text{ is given by;}$ $v_2 = \frac{\omega}{k} = \frac{1000}{3}$ $\text{The velocity of sound is directly proportional to the square root of temperature i.e., } v \propto \sqrt{T}$ $\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$ $\Rightarrow \frac{336 \times 3}{1000} = \sqrt{\frac{T}{273}}$ $\Rightarrow \sqrt{\frac{T}{273}} = 1.008$ $\text{Squaring both sides we get;}$ $\frac{T}{273} = 1.008 \times 1.008 = 1.016064$ $\Rightarrow T = 1.016 \times 273 = 277.385 \text{ K} \approx 277 \text{ K}$ $\text{The temperature in degrees Celsius is given by;}$ $T(^{\circ}\text{C}) = T(\text{K}) - 273 \text{ K} = 277 - 273 = 4^{\circ}\text{C}$ $\text{Hence, option (1) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}