Import Question JSON

Current Question (ID: 20541)

Question:
$A \ 750 \ \text{Hz}, \ 20 \ \text{V (RMS)} \ \text{source is connected to a resistance of} \ 100 \ \Omega, \ \text{an inductance of} \ 0.1803 \ \text{H and a capacitance of} \ 10 \ \mu\text{F, all in series. The time in which the resistance (heat capacity} \ 2 \ \text{J/}^\circ\text{C)} \ \text{will get heated by} \ 10^\circ\text{C (assuming no loss of heat to the surroundings) is close to:}$
Options:
  • 1. $365 \ \text{s}$
  • 2. $418 \ \text{s}$
  • 3. $245 \ \text{s}$
  • 4. $348 \ \text{s}$
Solution:
$\text{Hint:} \ P = V_{\text{rms}} i_{\text{rms}} \cos \phi$ $\text{Step 1: Find the total impedance} \ (Z) \ \text{in the circuit.}$ $\text{The angular frequency} \ (\omega) \ \text{is given by:}$ $\Rightarrow \omega = 2\pi f$ $\text{Substituting the values we get:}$ $\Rightarrow \omega = 2 \times \pi \times 750 = 4712.39 \ \text{rad/s}$ $\text{The inductive reactance} \ (X_L) \ \text{is given by:}$ $X_L = \omega L = 4712.39 \times 0.1803 \approx 850.74 \ \Omega$ $\text{The capacitive reactance} \ (X_C) \ \text{is given by:}$ $X_C = \frac{1}{\omega C} = \frac{1}{4712.39 \times 10 \times 10^{-6}} \approx 21.24 \ \Omega$ $\text{The total impedance} \ (Z) \ \text{in the circuit is given by:}$ $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $\text{Substituting the values we get:}$ $Z = \sqrt{100^2 + (850.74 - 21.24)^2} \approx 838.5 \ \Omega$ $\text{Step 2: Find the time in which the resistance will get heated by} \ 10^\circ\text{C}$ $\text{The RMS current} \ (I_{\text{RMS}}) \ \text{can be calculated using Ohm's law:}$ $I_{\text{RMS}} = \frac{V_{\text{RMS}}}{Z} = \frac{20}{838.5} \approx 0.0239 \ \text{A}$ $\text{The power} \ (P) \ \text{dissipated in the resistor is given by:}$ $P = I_{\text{RMS}}^2 \times R = (0.0239)^2 \times 100 \approx 0.057 \ \text{W}$ $\text{The heat} \ (Q) \ \text{required to raise the temperature of the resistor by} \ \Delta \theta \ \text{is given by:}$ $\Rightarrow Q = S \times \Delta \theta = 2 \times 10 = 20 \ \text{J}$ $P = \frac{Q}{T} \Rightarrow T = \frac{Q}{P}$ $\text{Substituting the values we get:}$ $\Rightarrow T = \frac{20}{0.057} \approx 350.88 \ \text{s}$ $\text{Hence, option} \ (4) \ \text{is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}