Import Question JSON
Current Question (ID: 20621)
Question:
$\text{Correctly match the two lists.}$ $\text{List-I:}$ \begin{array}{ll} (a) \ \text{Gauss's law (electrostatics)} & (b) \ \text{Ampere's circuital law} \\ (c) \ \text{Gauss's law (magnetism)} & (d) \ \text{Faraday's law of induction} \end{array} $ $\text{List-II:}$ \begin{array}{ll} (P) \ \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0 & (Q) \ \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \mu_0 i_{\text{enclosed}} \\ (R) \ \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{\text{enclosed}}}{\varepsilon_0} & (S) \ \varepsilon = - \frac{d\phi_B}{dt} \end{array}$
Options:
-
1. $(a) \rightarrow (R), (b) \rightarrow (Q), (c) \rightarrow (S), (d) \rightarrow (P)$
-
2. $(a) \rightarrow (R), (b) \rightarrow (Q), (c) \rightarrow (P), (d) \rightarrow (S)$
-
3. $(a) \rightarrow (R), (b) \rightarrow (S), (c) \rightarrow (Q), (d) \rightarrow (P)$
-
4. $(a) \rightarrow (R), (b) \rightarrow (S), (c) \rightarrow (P), (d) \rightarrow (Q)$
Solution:
$\text{Hint: } \phi = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{\text{in}}}{\varepsilon_0}$ $\text{Step: Identify the correct match.}$ $\text{Gauss's law (electrostatics): } \phi = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{\text{enclosed}}}{\varepsilon_0} \ \text{Therefore, the correct match is } a \rightarrow R$ $\text{Ampere's circuital law: } \oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \mu_0 i_{\text{enclosed}} \ \text{Therefore, the correct match is } b \rightarrow Q$ $\text{Gauss's law (magnetism): } \phi = \oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0 \ \text{Therefore, the correct match is } c \rightarrow P$ $\text{Faraday's law of electromagnetic induction: } \varepsilon = - \frac{d\phi_B}{dt} \ \text{Therefore, the correct match is } d \rightarrow S$ $\text{Therefore, the correct match is } a \rightarrow R; b \rightarrow Q; c \rightarrow P; d \rightarrow S$ $\text{Hence, option (2) is the correct answer.}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.