Import Question JSON

Current Question (ID: 20979)

Question:
$\text{Species, among the following, that experience an increase in bond strength upon the removal of an electron are:}$ $\text{(a) } \text{B}_2$ $\text{(b) } \text{NO}$ $\text{(c) } \text{N}_2$ $\text{(d) } \text{O}_2$ $\text{(e) } \text{C}_2$ $\text{Choose the correct option:}$
Options:
  • 1. $\text{(b) and (d)}$
  • 2. $\text{(a), (b) and (d)}$
  • 3. $\text{(b) and (e)}$
  • 4. $\text{(b) and (c)}$
Solution:
$\text{Hint: Bond strength is directly proportional to the bond order.}$ $\text{Step 1: The bond order is calculated as follows:}$ $\frac{\text{Number of bonding electrons} - \text{Number of antibonding electrons}}{2}$ $\text{The bond order for the given molecules is calculated as follows:}$ $\begin{array}{|c|c|c|} \hline \text{S.No.} & \text{Molecule} & \text{Electronic configuration} \\ \hline 1 & \text{B}_2 & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^1 (\pi_{2p_y})^1 \\ 2 & \text{B}_2^+ & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^1 (\pi_{2p_y})^0 \\ 3 & \text{NO} & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^1 \\ 4 & \text{NO}^+ & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 \\ 5 & \text{N}_2 & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 \\ 6 & \text{N}_2^+ & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^1 \\ 7 & \text{O}_2 & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 (\pi^*_{2p_x})^1 (\pi^*_{2p_y})^1 \\ 8 & \text{O}_2^+ & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 (\pi^*_{2p_x})^2 (\pi^*_{2p_y})^1 \\ 9 & \text{C}_2 & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^2 \\ 10 & \text{C}_2^+ & (\sigma_{1s})^2 (\sigma^*_{1s})^2 (\sigma_{2s})^2 (\sigma^*_{2s})^2 (\pi_{2p_x})^2 (\pi_{2p_y})^1 \\ \hline \end{array}$ $\text{Step 2: Removing an electron from an antibonding molecular orbital increases the bond order of a molecule. This is because the antibonding orbital destabilizes the molecule by increasing its energy.}$ $\text{Among the given molecules, the bond order increases when an electron is removed from } \text{NO} \text{ and } \text{O}_2. \text{ So, the bond strength of } \text{NO} \text{ and } \text{O}_2 \text{ increases when an electron is removed from these species.}$ $\text{Hence, option 1 is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}