Import Question JSON

Current Question (ID: 21060)

Question:
$\text{pH of a buffer solution of } \text{CH}_3\text{CH}_2\text{COOH(aq.)} \text{ and } \text{CH}_3\text{CH}_2\text{COONa(aq.)} \text{ is 4.}$ $\text{Then, the ratio of } \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]} \text{ is-}$ $\text{(Given } K_a = 10^{-5})$
Options:
  • 1. 0.1
  • 2. 10
  • 3. 0.2
  • 4. 20
Solution:
$\text{Hint: } \text{pH} = \text{p}K_a + \log \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$ $\text{Step 1:}$ $\text{The formula of the Henderson-Hasselbalch equation is as follows:}$ $\text{pH} = \text{p}K_a + \log \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$ $\text{p}K_a = -\log K_a$ $\text{Step 2:}$ $\text{Calculate the ratio of } \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$ $4 = -\log 10^{-5} + \log \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$ $4 = 5 + \log \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$ $-1 = \log \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$ $10^{-1} = \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$ $\frac{1}{10} = \frac{[\text{CH}_3\text{CH}_2\text{COO}^-]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$ $\text{Hence, option 1 is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}