Import Question JSON
Current Question (ID: 21374)
Question:
$\text{What is the nearest integer value of } x \text{ for the Gibbs free energy change at } 298 \text{ K, expressed as } x \times 10^{-1} \text{ kJmol}^{-1} \text{ for the given reaction.}$ $\text{Cu}(s) + \text{Sn}^{2+}(0.001M) \rightarrow \text{Cu}^{2+}(0.01M) + \text{Sn}(s)$ $\text{Given: } E^\circ_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \text{ V}; \; E^\circ_{\text{Sn}^{2+}/\text{Sn}} = -0.14 \text{ V}; \; F = 96500 \text{ C mol}^{-1}$
Options:
-
1. 873
-
2. 983
-
3. 1002
-
4. 911
Solution:
$\text{Hint: } \Delta G = -nF E_{\text{cell}}$ $\text{STEP 1: The given reaction is:}$ $\text{Cu}(s) + \text{Sn}^{2+}(0.001M) \rightarrow \text{Cu}^{2+}(0.01M) + \text{Sn}(s)$ $\text{Reaction at cathode:}$ $\text{Sn}^{2+}(0.001 \text{ M}) + 2e^- \rightarrow \text{Sn}(s); \; E^\circ_{\text{Sn}^{2+}/\text{Sn}} = -0.14 \text{ V}$ $\text{Reaction at anode:}$ $\text{Cu}(s) \rightarrow \text{Cu}^{2+}(0.01 \text{ M}) + 2e^-; \; E^\circ_{\text{Cu}/\text{Cu}^{2+}} = -0.34 \text{ V}$ $\text{Thus, } E^\circ_{\text{cell}} = (-0.14 - 0.34) \text{ V} = -0.48 \text{ V}$ $\text{STEP 2: Use Nernst Equation to find the cell potential:}$ $E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.059}{2} \log \left[ \frac{[\text{Cu}^{2+}]}{[\text{Sn}^{2+}]} \right]$ $E_{\text{cell}} = -0.48 - \frac{0.059}{2} \log \frac{0.01}{0.001}$ $E_{\text{cell}} = -0.48 - \frac{0.059}{2} \log 10$ $E_{\text{cell}} = -0.48 - 0.0295$ $\text{or, } E_{\text{cell}} = -0.509$ $\text{STEP 3: We know that, } \Delta G = -nF E_{\text{cell}}$ $\text{So, } \Delta G = -2 \times 96500 \times (-0.5095) \text{ J mol}^{-1}$ $\text{or, } \Delta G = 98333.5 \text{ J mol}^{-1} = 98.333 \text{ kJ mol}^{-1}$ $\text{or, } \Delta G = 983.33 \times 10^{-1} \text{ kJ mol}^{-1}$ $\text{So, option 2 is the correct answer.}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.