Import Question JSON
Current Question (ID: 7403)
Question:
$\text{Suppose the elements X and Y combine to form two compounds } \text{XY}_2 \text{ and } \text{X}_3\text{Y}_2\text{. If 0.1 mole of } \text{XY}_2 \text{ weighs 10 g and 0.05 mole of } \text{X}_3\text{Y}_2 \text{ weighs 9 g, the atomic weight of X and Y respectively, will be:}$
Options:
-
1. $40, 30$
-
2. $60, 40$
-
3. $20, 30$
-
4. $30, 20$
Solution:
$\text{Hint: We can use the relationship between moles, mass and molar mass to set up equations and solve for the atomic weights.}$\n\n$\text{Step 1: Let's denote the atomic masses of X and Y as } A_X \text{ and } A_Y \text{ respectively.}$\n\n$\text{Step 2: For the compound } \text{XY}_2\text{, calculate the molar mass.}$\n\n$\text{Molar mass of } \text{XY}_2 = A_X + 2A_Y$\n\n$\text{Given that 0.1 mole of } \text{XY}_2 \text{ weighs 10 g:}$\n\n$\text{Mass} = \text{Number of moles} \times \text{Molar mass}$\n\n$10 \text{ g} = 0.1 \text{ mol} \times (A_X + 2A_Y)$\n\n$A_X + 2A_Y = \frac{10 \text{ g}}{0.1 \text{ mol}} = 100 \text{ g/mol} \ldots \text{(i)}$\n\n$\text{Step 3: For the compound } \text{X}_3\text{Y}_2\text{, calculate the molar mass.}$\n\n$\text{Molar mass of } \text{X}_3\text{Y}_2 = 3A_X + 2A_Y$\n\n$\text{Given that 0.05 mole of } \text{X}_3\text{Y}_2 \text{ weighs 9 g:}$\n\n$9 \text{ g} = 0.05 \text{ mol} \times (3A_X + 2A_Y)$\n\n$3A_X + 2A_Y = \frac{9 \text{ g}}{0.05 \text{ mol}} = 180 \text{ g/mol} \ldots \text{(ii)}$\n\n$\text{Step 4: Solve the system of equations (i) and (ii) to find } A_X \text{ and } A_Y\text{.}$\n\n$\text{Subtract equation (i) from equation (ii):}$\n\n$(3A_X + 2A_Y) - (A_X + 2A_Y) = 180 - 100$\n\n$2A_X = 80$\n\n$A_X = 40 \text{ g/mol}$\n\n$\text{Substitute } A_X = 40 \text{ into equation (i):}$\n\n$40 + 2A_Y = 100$\n\n$2A_Y = 60$\n\n$A_Y = 30 \text{ g/mol}$\n\n$\text{Therefore, the atomic weights of X and Y are 40 and 30 g/mol, respectively.}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.