Solution:
Hint: Use the energy expression of a hydrogen atom to calculate wavelength.
Step 1: From the given expression calculate $\Delta E$.
Given, $E_n = (-2.18 \times 10^{-18})/\text{n}^2 \text{ J}$
The energy required for ionization from $\text{n}=2$ is the energy difference between the electron being completely removed (i.e., at $\text{n}=\infty$) and its initial state at $\text{n}=2$. This means the electron transitions from $\text{n}=2$ to $\text{n}=\infty$.
$\Delta E = E_{\infty} - E_2$
Since $E_{\infty} = (-2.18 \times 10^{-18})/\infty^2 = 0 \text{ J}$, and $E_2 = (-2.18 \times 10^{-18})/2^2 \text{ J}$, we have:
$\Delta E = 0 - \left( \frac{-2.18 \times 10^{-18}}{2^2} \right) \text{ J}$
$\Delta E = - \left( \frac{-2.18 \times 10^{-18}}{4} \right) \text{ J}$
$\Delta E = 0.545 \times 10^{-18} \text{ J}$
$\Delta E = 5.45 \times 10^{-19} \text{ J}$
Step 2: Calculate $\lambda$ from the energy and wavelength relationship.
We know that the energy of a photon (which causes the transition) is given by:
$\Delta E = \frac{\text{hc}}{\lambda}$
Here, $\lambda$ is the shortest wavelength causing the transition because the energy $\Delta E$ is the minimum energy required to remove the electron (ionization energy from $\text{n}=2$). A shorter wavelength would correspond to higher energy, which would also remove the electron. However, the question asks for the wavelength *that can be used to remove an electron completely*, which implies the minimum energy needed.
Rearranging the formula to solve for $\lambda$:
$\lambda = \frac{\text{hc}}{\Delta E}$
Where:
$\text{h}$ (Planck's constant) $= 6.626 \times 10^{-34} \text{ J s}$
$\text{c}$ (speed of light) $= 3 \times 10^8 \text{ m/s}$
Substitute the values:
$\lambda = \frac{(6.626 \times 10^{-34} \text{ J s}) \times (3 \times 10^8 \text{ m/s})}{5.45 \times 10^{-19} \text{ J}}$
$\lambda = \frac{1.9878 \times 10^{-25}}{5.45 \times 10^{-19}} \text{ m}$
$\lambda \approx 3.647 \times 10^{-7} \text{ m}$
To convert meters to Angstroms ($\mathring{\text{A}}$), we use the conversion factor $1 \mathring{\text{A}} = 10^{-10} \text{ m}$:
$\lambda = 3.647 \times 10^{-7} \text{ m} \times \frac{1 \mathring{\text{A}}}{10^{-10} \text{ m}}$
$\lambda = 3.647 \times 10^{3} \mathring{\text{A}}$
$\lambda = 3647 \mathring{\text{A}}$
The final answer is $\boxed{1}$