Import Question JSON

Current Question (ID: 7525)

Question:
$\text{The largest de Broglie wavelength among the following (all have equal velocity) is:}$
Options:
  • 1. $\text{CO}_2 \text{ molecule}$
  • 2. $\text{NH}_3 \text{ molecule}$
  • 3. $\text{Electron}$
  • 4. $\text{Proton}$
Solution:
$\text{Hint: Wavelength is inversely proportional to mass}$\n\n$\text{The de Broglie wavelength is given by:}$\n\n$\lambda = \frac{h}{p}$\n\n$\text{where } h \text{ is Planck's constant and } p \text{ is the momentum.}$\n\n$\text{Since } p = mv \text{, where } m \text{ is the mass and } v \text{ is the velocity:}$\n\n$\lambda = \frac{h}{mv}$\n\n$\text{Given that all particles have equal velocity, we can see that:}$\n\n$\lambda \propto \frac{1}{m}$\n\n$\text{This means the de Broglie wavelength is inversely proportional to the mass of the particle. The particle with the smallest mass will have the largest wavelength.}$\n\n$\text{Let's compare the masses:}$\n\n$\text{The mass of CO}_2 \text{ molecule is 44 amu.}$\n\n$\text{The mass of NH}_3 \text{ molecule is 17 amu.}$\n\n$\text{The mass of electron is } 9.10938356 \times 10^{-31} \text{ kg}$\n\n$\text{The mass of proton is } 1.6726219 \times 10^{-27} \text{ kg}$\n\n$\text{Converting all to the same units for comparison:}$\n\n$\text{1 amu } \approx 1.66054 \times 10^{-27} \text{ kg}$\n\n$\text{CO}_2\text{: } 44 \text{ amu } \approx 7.30638 \times 10^{-26} \text{ kg}$\n\n$\text{NH}_3\text{: } 17 \text{ amu } \approx 2.82292 \times 10^{-26} \text{ kg}$\n\n$\text{Electron: } 9.10938356 \times 10^{-31} \text{ kg}$\n\n$\text{Proton: } 1.6726219 \times 10^{-27} \text{ kg}$\n\n$\text{Clearly, the electron has the smallest mass by several orders of magnitude. Therefore, the electron will have the largest de Broglie wavelength.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}