Import Question JSON

Current Question (ID: 7561)

Question:
$\text{In a subshell, if the number of radial nodes is two times the number of angular nodes, then the minimum possible value of the principal quantum number (n) is:}$\n\n$\text{[angular nodes are non-zero]}$
Options:
  • 1. $1$
  • 2. $2$
  • 3. $3$
  • 4. $4$
Solution:
$\text{Hint: Total node is n-1}$\n\n$\text{Step 1:}$\n$\text{The radial nodes are two times the number of angular nodes.}$\n\n$\text{Step 2:}$\n\n$\text{Use the formula given below to get the number of angular nodes:}$\n\n$n - 1 - l = 2l$\n$n - 1 = 3l$\n$l \neq 0$\n$\text{Let } l = 1$\n$(n) - 1 = 3$\n$n = 4$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}