Import Question JSON

Current Question (ID: 7677)

Question:
$\text{The atomic species that has the maximum ionization energy is :}$
Options:
  • 1. $\text{O}^-$
  • 2. $\text{S}^-$ (Correct)
  • 3. $\text{Se}^-$
  • 4. $\text{Te}^-$
Solution:
$\text{HINT: S}^- \text{ has maximum ionization energy.}$ $\text{Explanation:}$ $\text{The energy ionization needed to remove an electron from a neutral atom is called ionization energy.}$ $\text{The more close the outermost electrons to the nucleus, the more it will become difficult to remove an electron from the outermost shell.}$ $\text{The outermost electrons in Se}^-, \text{Te}^-, \text{S}^- \text{ and O}^- \text{is present in electrons in 4p, 5p, 3p and 2p orbitals respectively.}$ $\text{The expected order of decreasing ionization energy is,}$ $\text{O}^- > \text{S}^- > \text{Se}^- > \text{Te}^-$ $\text{but, the actual order of decreasing ionization energy is,}$ $\text{S}^- > \text{O}^- > \text{Se}^- > \text{Te}^-$ $\text{This is because the 2p orbital has a smaller size and the inter electronic repulsion in compact 2p- orbitals is more than the 3p- orbitals.}$ $\text{Thus, the electron present in the outermost shell of the oxygen anion feels more repulsion in 2p- orbital than the electron present in the 3p-orbital of sulfur anion, so it becomes easy to remove an electron from the outermost shell of oxygen.}$ $\text{Therefore, S}^- \text{ has maximum ionization energy.}$ $\text{So, option 2 is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}