Import Question JSON

Current Question (ID: 8142)

Question:
$\text{A mixture of CO and CO}_2 \text{ is found to have a density } 1.5\text{ g/litre at } 30^{\circ}\text{C and } 730\text{ mm. The composition of the mixture is-}$
Options:
  • 1. $\text{CO: } 44\%; \text{ CO}_2 = 56\%$
  • 2. $\text{CO: } 32\%; \text{ CO}_2 = 68\%$
  • 3. $\text{CO: } 70\%; \text{ CO}_2 = 30\%$
  • 4. $\text{CO: } 9\%; \text{ CO}_2 = 91\%$
Solution:
$\text{Hint: } \text{P} = \frac{\text{w}}{\text{Vm}} \text{RT} \text{ (This is a simplified version of Ideal Gas Law, it should be } \text{P} = \frac{\text{m}}{\text{M V}} \text{RT or } \text{P} = \text{d} \frac{\text{RT}}{\text{M}} \text{ where M is molar mass).} \text{Step 1:} \text{The given values are as follows:} \text{For a mixture of CO and CO}_2\text{, d} = 1.50\text{ g/litre} \text{P} = \frac{730}{760}\text{ atm} \text{T} = 30^{\circ}\text{C} + 273 = 303\text{ K} \text{Calculate the molecular weight of gaseous mixture is as follows:} \text{Using the Ideal Gas Law: } \text{PV} = \text{nRT} \text{Since } \text{n} = \frac{\text{mass (w)}}{\text{molar mass (M)}} \text{PV} = \frac{\text{w}}{\text{M}}\text{RT} \text{P} = \frac{\text{w}}{\text{V}}\frac{\text{RT}}{\text{M}} \text{Since density } \text{d} = \frac{\text{w}}{\text{V}} \text{P} = \text{d} \frac{\text{RT}}{\text{M}} \text{Rearranging for M: } \text{M} = \frac{\text{dRT}}{\text{P}} \text{M} = \frac{1.5 \times 0.0821 \times 303}{730/760} \text{M} = \frac{1.5 \times 0.0821 \times 303}{0.9605} \text{M} = 38.85 \text{i.e. molecular weight of mixture of CO and CO}_2 = 38.85 \text{Step 2:} \text{Let } \text{a}% \text{ of mole of CO be in mixture then} \text{Average molecular weight} = \frac{\text{a} \times \text{M}_{\text{CO}} + (100 - \text{a}) \times \text{M}_{\text{CO}_2}}{100} \text{Molecular weight of CO } (\text{M}_{\text{CO}}) = 12 + 16 = 28 \text{Molecular weight of CO}_2 \text{ (M}_{\text{CO}_2}) = 12 + 2 \times 16 = 44 38.85 = \frac{\text{a} \times 28 + (100 - \text{a}) \times 44}{100} 38.85 \times 100 = 28\text{a} + 4400 - 44\text{a} 3885 = 4400 - 16\text{a} 16\text{a} = 4400 - 3885 16\text{a} = 515 \text{a} = \frac{515}{16} \text{a} = 32.19 \text{Mole % of CO} = 32.19\% \text{Mole % of CO}_2 = 100 - 32.19 = 67.81\% \text{Therefore, the composition is approximately CO: } 32\%; \text{ CO}_2 = 68\%$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}