Import Question JSON

Current Question (ID: 8209)

Question:
At relatively high pressure, van der Waals' equation reduces to-
Options:
  • 1. $PV = RT$
  • 2. $PV = RT + a/v$
  • 3. $PV = RT + Pb$
  • 4. $PV = RT - a/V^2$
Solution:
Hint: Van der waals equation is $\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$\n\nAt high pressure, volume of molecules should not be neglected in comparison to volume of gas. Thus, $\left(P + \frac{an^2}{V^2}\right)$ is equal to P. The Van der waal equation because $P(V - nb) = nRT$.\n\nHence, $PV = RT + Pb$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}