Question:
$\text{The enthalpy of combustion of methane, graphite, and dihydrogen at 298 K are, } -890.3 \text{ kJ mol}^{-1}\text{, } -393.5 \text{ kJ mol}^{-1}\text{, and } -285.8 \text{ kJ mol}^{-1} \text{ respectively. The enthalpy of formation of CH}_4\text{(g) is-}$
Solution:
$\text{Hint: Hess's Law of Constant Heat Summation}$
$\text{Write down the desired equation and see from which combination of given reactions we can get the desired reaction.}$
$\text{Explanation:}$
$\text{The following equations are as follows:}$
$(i)\text{ CH}_4\text{(g)} + 2\text{O}_2\text{(g)} \rightarrow \text{CO}_2\text{(g)} + 2\text{H}_2\text{O(g)}\quad \Delta\text{H} = -890.3 \text{ kJ mol}^{-1}$
$(ii)\text{ C(s)} + \text{O}_2\text{(g)} \rightarrow \text{CO}_2\text{(g)}\quad \Delta\text{H} = -393.5 \text{ kJ mol}^{-1}$
$(iii)\text{ H}_2\text{(g)} + \frac{1}{2}\text{O}_2\text{(g)} \rightarrow \text{H}_2\text{O(g)}\quad \Delta\text{H} = -285.8 \text{ kJ mol}^{-1}$
$\text{The desired reaction for the formation of CH}_4\text{(g) is C(s)} + 2\text{H}_2\text{(g)} \rightarrow \text{CH}_4\text{(g)}$
$\text{To get this reaction, we need to manipulate the given equations. Let's see how:}$
$\text{We need to get C(s) and H}_2\text{(g) as reactants and CH}_4\text{(g) as product.}$
$\text{From equation (ii), we can get C(s) as a reactant.}$
$\text{From equation (iii), we can get H}_2\text{(g) as a reactant, but we need 2 moles, so we'll multiply equation (iii) by 2.}$
$\text{From equation (i), we can get CH}_4\text{(g) as a reactant, but we need it as a product, so we'll reverse equation (i).}$
$\text{Therefore, the combination is: equation (ii) + 2 × equation (iii) - equation (i)}$
$(ii) + 2(iii) - (i)$
$\text{This gives us:}$
$\text{C(s)} + \text{O}_2\text{(g)} + 2[\text{H}_2\text{(g)} + \frac{1}{2}\text{O}_2\text{(g)}] - [\text{CH}_4\text{(g)} + 2\text{O}_2\text{(g)}] \rightarrow \text{CO}_2\text{(g)} + 2\text{H}_2\text{O(g)} - [\text{CO}_2\text{(g)} + 2\text{H}_2\text{O(g)}]$
$\text{Simplifying:}$
$\text{C(s)} + \text{O}_2\text{(g)} + 2\text{H}_2\text{(g)} + \text{O}_2\text{(g)} - \text{CH}_4\text{(g)} - 2\text{O}_2\text{(g)} \rightarrow 0$
$\text{Further simplifying:}$
$\text{C(s)} + 2\text{H}_2\text{(g)} - \text{CH}_4\text{(g)} \rightarrow 0$
$\text{Rearranging to get the desired reaction:}$
$\text{C(s)} + 2\text{H}_2\text{(g)} \rightarrow \text{CH}_4\text{(g)}$
$\text{Now, let's calculate the enthalpy change:}$
$\Delta_f\text{H}_{\text{CH}_4} = \Delta\text{H}_{(ii)} + 2 \Delta\text{H}_{(iii)} - \Delta\text{H}_{(i)}$
$= [-393.5 + 2(-285.8) - (-890.3)]\text{ kJ mol}^{-1}$
$= [-393.5 - 571.6 + 890.3]\text{ kJ mol}^{-1}$
$= [-965.1 + 890.3]\text{ kJ mol}^{-1}$
$= -74.8\text{ kJ mol}^{-1}$
$\text{Therefore, the enthalpy of formation of CH}_4\text{(g) is } -74.8\text{ kJ mol}^{-1}$