Import Question JSON
Current Question (ID: 8313)
Question:
$\text{The standard enthalpy of the formation of CH}_3\text{OH}_{(l)} \text{ from the following data is:}$
$\text{CH}_3\text{OH}_{(l)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{CO}_{2(g)} + 2\text{H}_2\text{O}_{(l)}; \Delta_r\text{H}^{\circ} = -726 \text{ kJ mol}^{-1}$
$\text{C(s)} + \text{O}_{2(g)} \rightarrow \text{CO}_{2(g)}; \Delta_c\text{H}^{\circ} = -393 \text{ kJ mol}^{-1}$
$\text{H}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{H}_2\text{O}_{(l)}; \Delta_f\text{H}^{\circ} = -286 \text{ kJ mol}^{-1}$
Options:
-
1. $-239 \text{ kJ mol}^{-1}$
-
2. $+239 \text{ kJ mol}^{-1}$
-
3. $-47 \text{ kJ mol}^{-1}$
-
4. $+47 \text{ kJ mol}^{-1}$
Solution:
$\text{Hint: Write the equation for the formation of CH}_3\text{OH then find standard enthalpy of formation.}$
$\text{Step 1: Note down the given data}$
$(i)\text{ CH}_3 \text{OH}_{(l)} + \frac{3}{2}\text{O}_{2(g)} \rightarrow \text{CO}_{2(g)} + 2\text{H}_2\text{O}_{(l)} ; \Delta_r\text{H}^{\circ} = -726 \text{ kJ mol}^{-1}$
$(ii)\text{ C(s)} + \text{O}_{2(g)} \rightarrow \text{CO}_{2(g)} ; \Delta_c\text{H}^{\circ} = -393 \text{ kJ mol}^{-1}$
$(iii)\text{ H}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{H}_2\text{O}_{(l)} ; \Delta_f\text{H}^{\circ} = -286 \text{ kJ mol}^{-1}$
$\text{Step 2: Write down the equation for the formation of CH}_3\text{OH}_{(l)}$
$\text{The formation of a compound is defined as the reaction in which the compound is formed from its constituent elements in their standard states.}$
$\text{For methanol (CH}_3\text{OH}_{(l)}\text{), the formation reaction is:}$
$(\text{I})\text{ C(s)} + 2\text{H}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{CH}_3 \text{OH}_{(l)}$
$\text{Step 3: Calculate the enthalpy of formation of CH}_3\text{OH}_{(l)}\text{ using the above equations}$
$\text{The reaction (I) can be obtained by following the algebraic calculations as:}$
$\text{Equation (ii)} + 2 \times \text{(Equation (iii))} - \text{equation (i)}$
$\text{Let's verify this combination:}$
$\text{C(s)} + \text{O}_{2(g)} + 2[\text{H}_{2(g)} + \frac{1}{2}\text{O}_{2(g)}] - [\text{CH}_3\text{OH}_{(l)} + \frac{3}{2}\text{O}_{2(g)}] \rightarrow \text{CO}_{2(g)} + 2\text{H}_2\text{O}_{(l)} - [\text{CO}_{2(g)} + 2\text{H}_2\text{O}_{(l)}]$
$\text{Simplifying:}$
$\text{C(s)} + \text{O}_{2(g)} + 2\text{H}_{2(g)} + \text{O}_{2(g)} - \text{CH}_3\text{OH}_{(l)} - \frac{3}{2}\text{O}_{2(g)} \rightarrow 0$
$\text{Further simplifying:}$
$\text{C(s)} + 2\text{H}_{2(g)} + \text{O}_{2(g)} + \text{O}_{2(g)} - \frac{3}{2}\text{O}_{2(g)} - \text{CH}_3\text{OH}_{(l)} \rightarrow 0$
$\text{C(s)} + 2\text{H}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} - \text{CH}_3\text{OH}_{(l)} \rightarrow 0$
$\text{Rearranging to get the desired formation reaction:}$
$\text{C(s)} + 2\text{H}_{2(g)} + \frac{1}{2}\text{O}_{2(g)} \rightarrow \text{CH}_3 \text{OH}_{(l)}$
$\text{Now, let's calculate the enthalpy change:}$
$\text{Thus, } \Delta_f\text{H}^{\circ} [\text{CH}_3 \text{OH (l)}] = \Delta_c\text{H}^{\circ} + 2 \times (\Delta_f\text{H}^{\circ} (\text{H}_2\text{O}_{(l)})) - \Delta_r \text{H}^{\circ}$
$= -393 \text{ kJ mol}^{-1} + 2 \times (-286 \text{ kJ mol}^{-1}) - (-726 \text{ kJ mol}^{-1})$
$= -393 \text{ kJ mol}^{-1} - 572 \text{ kJ mol}^{-1} + 726 \text{ kJ mol}^{-1}$
$= -965 \text{ kJ mol}^{-1} + 726 \text{ kJ mol}^{-1}$
$= -239 \text{ kJ mol}^{-1}$
$\text{Therefore, the standard enthalpy of formation of CH}_3\text{OH}_{(l)} \text{ is } -239 \text{ kJ mol}^{-1}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.