Import Question JSON
Current Question (ID: 8319)
Question:
$\text{The standard heat of combustion of propane is } -2220.1 \text{ kJ mol}^{-1}\text{. The standard heat of vaporisation of liquid water is } 44.0 \text{ kJ mol}^{-1}\text{. The enthalpy change for the reaction is−}$
$\text{C}_3\text{H}_8 \text{ (g)} + 5\text{O}_2 \text{ (g)} \rightarrow 3\text{CO}_2 \text{ (g)} + 4\text{H}_2\text{O(g)}$
Options:
-
1. $-2220.1 \text{ kJ}$
-
2. $-2044.1 \text{ kJ}$
-
3. $-2396.1 \text{ kJ}$
-
4. $-2176.1 \text{ kJ}$
Solution:
$\text{Hint: } \Delta\text{H}^{\circ}_{(\text{Rxn})} = \Delta\text{H}^{\circ}_{\text{comb}} (\text{C}_3\text{H}_8) + \Delta\text{H}^{\circ}_{\text{vap}} (4\text{H}_2\text{O})$
$\text{Step 1: Analyze the information given and identify what we need to calculate}$
$\text{We are given:}$
$\text{- Standard heat of combustion of propane: } \Delta\text{H}^{\circ}_{\text{comb}} (\text{C}_3\text{H}_8) = -2220.1 \text{ kJ mol}^{-1}$
$\text{- Standard heat of vaporization of water: } \Delta\text{H}^{\circ}_{\text{vap}} (\text{H}_2\text{O}) = 44.0 \text{ kJ mol}^{-1}$
$\text{We need to find the enthalpy change for the reaction:}$
$\text{C}_3\text{H}_8 \text{ (g)} + 5\text{O}_2 \text{ (g)} \rightarrow 3\text{CO}_2 \text{ (g)} + 4\text{H}_2\text{O(g)}$
$\text{Step 2: Understand the relationship between the given values and the required enthalpy change}$
$\text{The standard heat of combustion of propane typically refers to the reaction where water is produced in the liquid state:}$
$\text{C}_3\text{H}_8 \text{ (g)} + 5\text{O}_2 \text{ (g)} \rightarrow 3\text{CO}_2 \text{ (g)} + 4\text{H}_2\text{O(l)}$
$\text{However, in our target reaction, water is produced in the gaseous state.}$
$\text{To get from liquid water to gaseous water, we need to account for the heat of vaporization.}$
$\text{Step 3: Calculate the enthalpy change for the reaction}$
$\text{First, let's calculate the total heat of vaporization for 4 moles of water:}$
$\Delta\text{H}^{\circ}_{\text{vap}} \text{ of 4 mol H}_2\text{O} = 4 \times 44.0 \text{ kJ mol}^{-1} = 176.0 \text{ kJ}$
$\text{Now, we can calculate the enthalpy change for the target reaction:}$
$\Delta\text{H}^{\circ}_{(\text{Rxn})} = \Delta\text{H}^{\circ}_{\text{comb}} (\text{C}_3\text{H}_8) + \Delta\text{H}^{\circ}_{\text{vap}} (4\text{H}_2\text{O})$
$= -2220.1 \text{ kJ} + 176.0 \text{ kJ}$
$= -2044.1 \text{ kJ}$
$\text{Therefore, the enthalpy change for the reaction is } -2044.1 \text{ kJ}$
$\text{This makes sense because less energy is released when water is produced as a gas compared to when it's produced as a liquid, since energy is required to vaporize water.}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.