Import Question JSON
Current Question (ID: 8324)
Question:
$\text{The maximum work done in expanding 16g O}_2 \text{ isothermally at 300 K and occupying a volume of}$
$\text{5 dm}^3 \text{ until the volume becomes 25 dm}^3 \text{ is:}$
Options:
-
1. $-2.01 \times 10^3 \text{ J}$
-
2. $2.01 \times 10^{-3} \text{ J}$
-
3. $+2.81 \times 10^3 \text{ J}$
-
4. $+2.01 \times 10^{-6} \text{ J}$
Solution:
$\text{Hint: work done} = -\text{nRT}\ln \frac{\text{V}_2}{\text{V}_1}$
$\text{Step 1: Identify the given values}$
$\text{The given values are as follows:}$
$\text{T = 300 K}$
$\text{V}_1 = 5 \text{ dm}^3$
$\text{V}_2 = 25 \text{ dm}^3$
$\text{Mass of O}_2 = 16 \text{ g}$
$\text{R = 8.314 J/(mol·K) (universal gas constant)}$
$\text{Step 2: Calculate the number of moles of O}_2$
$\text{Molar mass of O}_2 = 32 \text{ g/mol}$
$\text{Number of moles (n)} = \frac{\text{Mass of O}_2}{\text{Molar mass of O}_2} = \frac{16 \text{ g}}{32 \text{ g/mol}} = 0.5 \text{ mol}$
$\text{Step 3: Calculate the maximum work done during isothermal expansion}$
$\text{For an isothermal reversible process, the maximum work done is given by:}$
$\text{work done} = -\text{nRT}\ln\frac{\text{V}_2}{\text{V}_1}$
$\text{Substituting the values:}$
$\text{work done} = -(0.5 \text{ mol})(8.314 \text{ J/(mol·K)})(300 \text{ K})\ln\frac{25 \text{ dm}^3}{5 \text{ dm}^3}$
$\text{work done} = -(0.5)(8.314)(300)\ln(5)$
$\text{work done} = -1247.1 \times \ln(5)$
$\text{work done} = -1247.1 \times 1.6094$
$\text{work done} = -2007.1 \text{ J} \approx -2.01 \times 10^3 \text{ J}$
$\text{The negative sign indicates that work is done by the system on the surroundings during expansion.}$
$\text{Therefore, the maximum work done in expanding 16g of O}_2 \text{ isothermally from 5 dm}^3 \text{ to 25 dm}^3 \text{ at 300 K is } -2.01 \times 10^3 \text{ J.}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.