Question:
$\text{At a temperature of 300K, what is the entropy change for the reaction given below?}$
$2\text{H}_2 \text{ (g)} + \text{O}_2 \text{ (g)} \rightarrow 2\text{H}_2\text{O(l)}$
$\text{Standard entropies of H}_2 \text{ (g), O}_2\text{(g) and H}_2\text{O(l) are 126.6, 201.20 and 68.0 JK}^{-1}\text{mol}^{-1} \text{ respectively.}$
Solution:
$\text{Hint: } \Delta\text{S}_{\text{reaction}} = \Sigma\text{S}_{\text{product}} - \Sigma\text{S}_{\text{reactant}}$
$\text{Step 1: Identify the given information}$
$\text{The reaction is: } 2\text{H}_2 \text{ (g)} + \text{O}_2 \text{ (g)} \rightarrow 2\text{H}_2\text{O(l)}$
$\text{Given standard entropies:}$
$\text{S}^{\circ}\text{(H}_2\text{, g)} = 126.6 \text{ JK}^{-1}\text{mol}^{-1}$
$\text{S}^{\circ}\text{(O}_2\text{, g)} = 201.20 \text{ JK}^{-1}\text{mol}^{-1}$
$\text{S}^{\circ}\text{(H}_2\text{O, l)} = 68.0 \text{ JK}^{-1}\text{mol}^{-1}$
$\text{Step 2: Calculate the entropy change using the formula}$
$\text{The entropy change for a reaction is given by:}$
$\Delta\text{S}_{\text{reaction}} = \Sigma\text{S}_{\text{products}} - \Sigma\text{S}_{\text{reactants}}$
$\text{For this reaction:}$
$\Delta\text{S}_{\text{reaction}} = \Sigma\text{S}_{\text{products}} - \Sigma\text{S}_{\text{reactants}}$
$= 2 \times \text{S}^{\circ}\text{(H}_2\text{O, l)} - [2 \times \text{S}^{\circ}\text{(H}_2\text{, g)} + \text{S}^{\circ}\text{(O}_2\text{, g)}]$
$\text{Step 3: Substitute the values and calculate}$
$\Delta\text{S}_{\text{reaction}} = 2 \times 68.0 \text{ JK}^{-1}\text{mol}^{-1} - [2 \times 126.6 \text{ JK}^{-1}\text{mol}^{-1} + 201.20 \text{ JK}^{-1}\text{mol}^{-1}]$
$= 136.0 \text{ JK}^{-1}\text{mol}^{-1} - [253.2 \text{ JK}^{-1}\text{mol}^{-1} + 201.20 \text{ JK}^{-1}\text{mol}^{-1}]$
$= 136.0 \text{ JK}^{-1}\text{mol}^{-1} - 454.4 \text{ JK}^{-1}\text{mol}^{-1}$
$= -318.4 \text{ JK}^{-1}\text{mol}^{-1}$
$\text{Therefore, the entropy change for the reaction is } -318.4 \text{ JK}^{-1}\text{mol}^{-1}$
$\text{The negative value of entropy change makes physical sense because in this reaction, three moles of gaseous reactants (2 moles of H}_2\text{ and 1 mole of O}_2\text{) are converted to two moles of liquid water. When gases are converted to liquids, there is a significant decrease in disorder or randomness, as molecules in the liquid state have much less freedom of movement compared to the gas state. This decrease in disorder corresponds to a negative entropy change.}$