Import Question JSON
Current Question (ID: 8395)
Question:
$\text{For the reaction } \text{N}_2\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{NO}\text{(g)} \text{ the equilibrium constant is } K_1.$
$\text{The equilibrium constant is } K_2 \text{ for the reaction } 2\text{NO}\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{NO}_2\text{(g)}$
$\text{The value of K for the reaction given below will be:}$
$\text{NO}_2\text{(g)} \rightleftharpoons \frac{1}{2}\text{N}_2\text{(g)} + \text{O}_2\text{(g)}$
Options:
-
1. $\frac{1}{4}(4)K_1K_2$
-
2. $\left[\frac{1}{K_1K_2}\right]^{1/2}$
-
3. $\frac{1}{(K_1K_2)}$
-
4. $\frac{1}{(2K_1K_2)}$
Solution:
$\text{Hint: Use properties of Equilibrium constant.}$
$\text{Step 1:}$
$\text{N}_2\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{NO}\text{(g)}; K_1 \ldots\ldots (i)$
$2\text{NO}\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{NO}_2\text{(g)}; K_2 \ldots\ldots (ii)$
$\text{Add equation i and ii}$
$\text{N}_2\text{(g)} + 2\text{O}_2\text{(g)} \rightleftharpoons 2\text{NO}_2\text{(g)}; K = K_1 \times K_2 \ldots\ldots (iii)$
$\text{Step 2:}$
$\text{Multiply equation iii with } \frac{1}{2} \text{ and reverse the reaction}$
$\text{therefore, } \text{NO}_2\text{(g)} \rightleftharpoons \frac{1}{2}\text{N}_2\text{(g)} + \text{O}_2\text{(g)};$
$K = \left[\frac{1}{K_1K_2}\right]^{1/2}$
$\text{Detailed Explanation of Operations:}$
$\text{Step 1: Adding reactions}$
$\text{When reactions are added, their equilibrium constants are multiplied:}$
$\text{Reaction (i) + Reaction (ii) → } K_{\text{net}} = K_1 \times K_2$
$\text{Step 2: Reversing a reaction}$
$\text{When a reaction is reversed, the equilibrium constant becomes its reciprocal:}$
$\text{If } A \rightleftharpoons B \text{ has } K, \text{ then } B \rightleftharpoons A \text{ has } \frac{1}{K}$
$\text{Step 3: Multiplying by a fraction}$
$\text{When a reaction is multiplied by } \frac{1}{2}, \text{ the equilibrium constant is raised to the power } \frac{1}{2}:$
$\text{If } A \rightleftharpoons B \text{ has } K, \text{ then } \frac{1}{2}A \rightleftharpoons \frac{1}{2}B \text{ has } K^{1/2}$
$\text{Combining operations:}$
$\text{From } \text{N}_2 + 2\text{O}_2 \rightleftharpoons 2\text{NO}_2 \text{ with } K = K_1K_2$
$\text{Reverse: } 2\text{NO}_2 \rightleftharpoons \text{N}_2 + 2\text{O}_2 \text{ with } K = \frac{1}{K_1K_2}$
$\text{Multiply by } \frac{1}{2}: \text{NO}_2 \rightleftharpoons \frac{1}{2}\text{N}_2 + \text{O}_2 \text{ with } K = \left(\frac{1}{K_1K_2}\right)^{1/2}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.