Import Question JSON

Current Question (ID: 8396)

Question:
$\text{The value of the equilibrium constant of the reaction}$ $\text{HI(g)} \rightleftharpoons \frac{1}{2}\text{H}_2\text{(g)} + \frac{1}{2}\text{I}_2 \text{ is 8.0.}$ $\text{The equilibrium constant of the reaction}$ $\text{H}_2\text{(g)} + \text{I}_2\text{(g)} \rightleftharpoons \text{2HI(g) will be-}$
Options:
  • 1. $\frac{1}{16}$
  • 2. $\frac{1}{64}$
  • 3. $16$
  • 4. $\frac{1}{8}$
Solution:
$\text{Hint: Relations between Equilibrium Constants for a General Reaction and its Multiples.}$ $\text{Step 1:}$ $\text{Given,}$ $\text{HI(g)} \rightleftharpoons \frac{1}{2}\text{H}_2\text{(g)} + \frac{1}{2}\text{I}_2\text{(g)}$ $\text{K}_1 = \frac{[\text{H}_2]^{1/2}[\text{I}_2]^{1/2}}{[\text{HI}]} = 8.0$ $\text{Step 2:}$ $\text{We need to find the equilibrium constant for the following reaction:}$ $\text{H}_2\text{(g)} + \text{I}_2\text{(g)} \rightleftharpoons \text{2HI(g)}$ $\text{K}_2 = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$ $\text{We notice that the second reaction is the reverse of the first reaction, but with all coefficients multiplied by 2.}$ $\text{For the reverse reaction, the equilibrium constant is the reciprocal of the original:}$ $\text{K}_{\text{reverse}} = \frac{1}{\text{K}_{\text{forward}}}$ $\text{When we multiply all coefficients in a reaction by a factor } n\text{, the equilibrium constant is raised to the power } n\text{:}$ $\text{K}_{n\times\text{coefficients}} = (\text{K}_{\text{original}})^n$ $\text{For our case, the second reaction is the reverse of the first with all coefficients doubled, so:}$ $\text{K}_2 = \frac{1}{(\text{K}_1)^2} = \frac{1}{(8.0)^2} = \frac{1}{64}$ $\text{Therefore, the equilibrium constant of the reaction H}_2\text{(g)} + \text{I}_2\text{(g)} \rightleftharpoons \text{2HI(g) is } \frac{1}{64}\text{.}$ $\text{The correct answer is option 2: }\frac{1}{64}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}