Import Question JSON
Current Question (ID: 8401)
Question:
$\text{Some reactions are written below in Column I and their equilibrium constants in terms of } K_c \text{ are written in Column II.}$ $\text{Match the following reactions with the corresponding equilibrium constant.}$ $\begin{array}{ll} \text{Column I (Reaction)} & \text{Column II (Equilibrium constant)} \\ \text{A. } 2\text{N}_2\text{(g)} + 6\text{H}_2\text{(g)} \rightleftharpoons 4\text{NH}_3\text{(g)} & \text{1. } 2K_c \\ \text{B. } 2\text{NH}_3\text{(g)} \rightleftharpoons \text{N}_2\text{(g)} + 3\text{H}_2\text{(g)} & \text{2. } K_c^{1/2} \\ \text{C. } \frac{1}{2}\text{N}_2\text{(g)} + \frac{3}{2}\text{H}_2\text{(g)} \rightleftharpoons \text{NH}_3\text{(g)} & \text{3. } \frac{1}{K_c} \\ & \text{4. } K_c^2 \end{array}$
Options:
-
1. $\text{A-4, B-3, C-2}$
-
2. $\text{A-1, B-2, C-3}$
-
3. $\text{A-1, B-4, C-3}$
-
4. $\text{A-4, B-1, C-3}$
Solution:
$\text{Hint: Relations between Equilibrium Constants for a General Reaction and its Multiples.}$ $\text{For the reaction, } \text{N}_2\text{(g)} + 3\text{H}_2\text{(g)} \rightleftharpoons 2\text{NH}_3\text{(g)}$ $\text{Equilibrium constant } K_c = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3}$ $\text{A. The given reaction } 2\text{N}_2\text{(g)} + 6\text{H}_2\text{(g)} \rightleftharpoons 4\text{NH}_3\text{(g)} \text{ is twice the above reaction. Hence, } K = K_c^2$ $\text{B. The reaction } 2\text{NH}_3\text{(g)} \rightleftharpoons \text{N}_2\text{(g)} + 3\text{H}_2\text{(g)} \text{ is the reverse of the above reaction. Hence, } K = \frac{1}{K_c}$ $\text{C. The reaction } \frac{1}{2}\text{N}_2\text{(g)} + \frac{3}{2}\text{H}_2\text{(g)} \rightleftharpoons \text{NH}_3\text{(g)} \text{ is half of the above reaction. Hence, } K = \sqrt{K_c} = K_c^{1/2}$
Import JSON File
Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.