Question:
\text{Given the reaction: } 2\text{N}_2\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{N}_2\text{O(g)}
\text{If a mixture of } 0.482 \text{ mol N}_2 \text{ and } 0.933 \text{ mol of O}_2 \text{ is placed in a } 10 \text{ L vessel and allowed to form N}_2\text{O (K}_c = 2.0 \times 10^{-37} \text{ L mol}^{-1}\text{), the concentration of N}_2\text{O at equilibrium will be:}
Solution:
$\text{Hint: Use the basic equation of K}_c$ $\text{Explanation:}$ $\text{Step 1: Write down the given data}$ $\text{Let the concentration of N}_2\text{O at equilibrium be x.}$ $\text{The given reaction is:}$ $2\text{N}_2\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{N}_2\text{O}\text{(g)}$ $\text{Initial conc.: 0.482 mol, 0.933 mol, 0}$ $\text{At equilibrium: (0.482 - x) mol, (0.933 - x/2) mol, x mol}$ $\text{Therefore, at equilibrium, in the 10 L vessel:}$ $[\text{N}_2] = \frac{0.482-x}{10}, [\text{O}_2] = \frac{0.933-x/2}{10}, [\text{N}_2\text{O}] = \frac{x}{10}$ $\text{Step 2: Calculate the concentration of N}_2\text{O}$ $\text{The value of the equilibrium constant i.e. K}_c = 2.0 \times 10^{-37} \text{ is very small. Therefore, the amount of N}_2 \text{ and O}_2 \text{ reacted is also very small. Thus, x can be neglected from the expressions of molar concentrations of N}_2 \text{ and O}_2\text{.}$ $\text{Then,}$ $[\text{N}_2] = \frac{0.482}{10} = 0.0482 \text{ mol L}^{-1} \text{ and } [\text{O}_2] = \frac{0.933}{10} = 0.0933 \text{ mol L}^{-1}$ $\text{Now,}$ $K_c = \frac{[\text{N}_2\text{O}\text{(g)}]^2}{[\text{N}_2\text{(g)}]^2[\text{O}_2\text{(g)}]}$ $\Rightarrow 2.0 \times 10^{-37} \text{ L/mol} = \frac{(\frac{x}{10})^2}{(0.0482)^2(0.0933)}$ $\Rightarrow \frac{x^2}{100} = 2.0 \times 10^{-37} \times (0.0482)^2 \times 0.0933$ $\Rightarrow x^2 = 43.35 \times 10^{-40}$ $\Rightarrow x = 6.6 \times 10^{-20}$ $[\text{N}_2\text{O}] = \frac{x}{10} = \frac{6.6 \times 10^{-20}}{10} = 6.6 \times 10^{-21} \text{ M}$