Import Question JSON

Current Question (ID: 8859)

Question:
$\text{A particle is dropped vertically from rest from a height. The time taken by it to fall through successive distances of 1 m each will then be:}$
Options:
  • 1. $\text{All equal, being equal to } \sqrt{\frac{2}{g}} \text{ s.}$
  • 2. $\text{In the ratio of the square roots of the integers } 1, 2, 3\ldots$
  • 3. $\text{In the ratio of the difference in the square roots of the integers } \sqrt{1}, (\sqrt{2} - \sqrt{1}), (\sqrt{3} - \sqrt{2}), (\sqrt{4} - \sqrt{3}) \ldots$
  • 4. $\text{In the ratio of the reciprocal of the square roots of the integers i.e... } \frac{1}{\sqrt{1}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}}$
Solution:
$\text{Hint: } h = ut + \frac{1}{2}gt^2$ $\text{Step 1: Find the time taken by the particle through successive distances of 1 m.}$ $h = ut + \frac{1}{2}gt^2 \Rightarrow 1 = 0 \times t_1 + \frac{1}{2}gt_1^2 \Rightarrow t_1 = \sqrt{\frac{2}{g}}$ $\text{Velocity after travelling 1m distance}$ $v^2 = u^2 + 2gh \Rightarrow v^2 = (0)^2 + 2g \times 1 \Rightarrow v = \sqrt{2g}$ $\text{For the second 1 meter distance}$ $1 = \sqrt{2g} \times t_2 + \frac{1}{2}gt_2^2 \Rightarrow gt_2^2 + 2\sqrt{2g}t_2 - 2 = 0$ $t_2 = \frac{-2\sqrt{2g} + \sqrt{8g + 8g}}{2g} = \frac{-\sqrt{2} + 2}{\sqrt{g}}$ $\text{Step 2: Find the ratio of the time.}$ $\text{Taking +ve sign } t_2 = \frac{(2 - \sqrt{2})}{\sqrt{g}}$ $\therefore \frac{t_1}{t_2} = \frac{\sqrt{2}/g}{(2 - \sqrt{2})/\sqrt{g}} = \frac{1}{\sqrt{2} - 1} \text{ and so on.}$ $\text{Therefore, the ratio of the difference in the square roots of the integers is } \sqrt{1}, (\sqrt{2} - \sqrt{1}), (\sqrt{3} - \sqrt{2}), (\sqrt{4} - \sqrt{3}) \ldots$ $\text{Hence, option (3) is the correct answer.}$

Import JSON File

Upload a JSON file containing LaTeX/MathJax formatted question, options, and solution.

Expected JSON Format:

{
  "question": "The mass of carbon present in 0.5 mole of $\\mathrm{K}_4[\\mathrm{Fe(CN)}_6]$ is:",
  "options": [
    {
      "id": 1,
      "text": "1.8 g"
    },
    {
      "id": 2,
      "text": "18 g"
    },
    {
      "id": 3,
      "text": "3.6 g"
    },
    {
      "id": 4,
      "text": "36 g"
    }
  ],
  "solution": "\\begin{align}\n&\\text{Hint: Mole concept}\\\\\n&1 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\text{ moles of carbon atom}\\\\\n&0.5 \\text{ mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6] = 6 \\times 0.5 \\text{ mol} = 3 \\text{ mol}\\\\\n&1 \\text{ mol of carbon} = 12 \\text{ g}\\\\\n&3 \\text{ mol carbon} = 12 \\times 3 = 36 \\text{ g}\\\\\n&\\text{Hence, 36 g mass of carbon present in 0.5 mole of } \\mathrm{K}_4[\\mathrm{Fe(CN)}_6].\n\\end{align}",
  "correct_answer": 4
}